ROTATION NUMBERS OF DISCONTINUOUS
ORIENTATION-PRESERVING CIRCLE MAPS

ROMAIN BRETTE

ABSTRACT. We extend a few well-known results about orientation
preserving homeomorphisms of the circle to orientation preserving
circle maps, allowing even an infinite number of discontinuities.
We define a set-valued map associated to the lift by filling the
gaps in the graph, that shares many properties with continuous
functions. Using elementary set-valued analysis, we prove exis-
tence and uniqueness of the rotation number, periodic limit orbit
in the case when the latter is rational, and Cantor structure of the
unique limit set when the rotation number is irrational. Moreover,
the rotation number is found to be continuous with respect to the
set-valued extension if we endow the space of such maps with the
Haussdorff topology on the graph. For increasing continuous fam-
ilies of such maps, the set of parameter values where the rotation
number is irrational is a Cantor set (up to a countable number of

points).

1. INTRODUCTION

While the well-established theory of orientation preserving homeo-
morphisms of the circle goes back to the works of Poincaré and Denjoy,
not much has been rigourously proved for orientation preserving circle

maps with discontinuities, a natural generalization of homeomorphisms
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of the circle. In real applications, continuity is often too restrictive. For
example, in the study of a neuron model called Integrate-and-Fire, we
are concerned with the dynamics of a map ¢, that gives the time of
the first spike following a given spike. When the model is periodically
forced, it turns out that ¢(t + 1) = ¢(t) + 1 and ¢ is increasing (see
[5]), but not necessarily continuous. It is therefore helpful to gener-
alize the results from homeomorphisms of the circle to discontinuous
orientation-preserving circle maps. This issue was addressed in [4] for
the case when there is a single discontinuity, though some of the results
were not rigourously proved.

Before we go on, we will need a few definitions. A circle map is
amap ¢ : R/Z — R/Z. A lift of ¢ is a real function f : R - R
satisfying f(x + 1) = f(x) + 1 for all z and 7o f = ¢ o m, where
m : R — R/Z is the canonical projection. A circle map ¢ is said to
preserve orientation if it has an increasing lift (strictly). To give a
better idea of what an orientation preserving circle map is, we may
equivalently define this property as follows: given an orientation of the
circle, ¢ preserves orientation if it maps any set of points to their image
without changing their order, as shown in figure 1.

We will first prove the following theorem:

Theorem 1. Let ¢ be an orientation preserving circle map and f an

increasing lift of ¢.
o The limit

im L) _

n—+oo n

exists and does not depend on r € R. This limit is called the

rotation number.
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FIGURE 1. An orientation preserving circle map

3

o If a € Q then all orbits under ¢ tend to a periodic orbit with
the same period.
e If a € R\ Q, then all orbits have the same limit set, which is

either the circle or a Cantor set.

Note that this theorem holds true even if ¢ has an infinite number
of discontinuities. A proof of this theorem for homeomorphisms of the
circle may be found in [2]. The first point is already known, as the
proof for homeomorphisms of the circle only uses the fact that the
lift f is increasing. For the second point, the usual proof relies on
continuity, and for the third point, it relies on the fact that ¢ maps
arcs to arcs, that is, on the intermediate value theorem. Therefore,
the proofs for orientation preserving homeomorphisms of the circle do
not extend naturally to orientation preserving circle maps. The idea
in this paper is to extend ¢ to a set-valued map that is in some sense
continuous, so that usual proofs naturally extend.

Consider the graph of a discontinuous lift f and fill the gap at each
discontinuity. What we get is the graph of a set-valued map, that is,
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a map F' from R to the subsets of R, which we write F' : R ~ R

Formally, this set-valued extension is defined as follows:

that is, F'(z) equals {f(z)} at each point where f is continuous, oth-
erwise it is the gap at . Now consider the dynamical system z,; €
F(zy,). The behaviour of this system is the same as the original one,
except when we reach a discontinuity, where we may choose any value
in the gap. Thus every orbit under f is also an orbit under F'. We
will find it easier to study this new dynamical system. Indeed, this
set-valued map is continuous in some sense, that is, it has a closed and
connected graph and shares with continuous functions a version of the
intermediate value theorem. The extension F' projects to a set-valued
circle map ® that maps arcs to arcs and has compact graph. Therefore
proofs for homeomorphisms naturally extend to this setting.

With the same approach, we will study families of orientation pre-
serving circle maps. If we endow the space of set-valued extensions of
increasing lifts with the Haussdorff topology on their graph, which is
weaker than uniform topology, then we find that the rotation number
is continuous with respect to the extension. This was already proved
in [7], but our method leads to a significantly shorter and less technical
proof. Then a continuous family of orientation preserving circle maps
is precisely a family f; such that (¢,z) — Fi(x) has a closed graph
and is bounded on bounded sets. For increasing families, we prove the

following theorem:

Theorem 2. Let t — fi, t € [a,b], be a family of increasing discon-
tinuous lifts such that (t,z) — fi(z) is increasing with respect to each

variable and t — F} is continuous with the Haussdorff topology on the
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graph of Fy, where Iy is the set-valued extension of f;. Let a(t) be the

rotation number of f;. Then

(1) « is continuous and non-decreasing

(2) for all p/q € QNIma, o~ (p/q) is an interval containing more
than one point, unless it is {a} or {b}.

(3) « reaches every irrational number at most once

(4) « takes irrational values on a Cantor subset of [a,b], up to a

countable number of points.

A restriction of the third point was proved in [7].
We shall first recall some basic ideas and results from set-valued
analysis in section 2. Then we will prove theorem 1 in section 3 and

theorem 2 in section 4.

2. FUNDAMENTALS OF SET-VALUED ANALYSIS

In the subsequent study we will only need very elementary results
from set-valued analysis. We advise the reader to refer to [1, 8, 3] for
a detailed account of set-valued analysis. All the topological spaces
considered here are assumed to be metric spaces. Some results in this
section have not been published before, though they are not difficult,
so we shall provide the reader with a brief proof.

In the following, we shall say a set-valued map F' : X ~» Y is com-
pact/closed when the graph of F' is compact/closed in the product
space X X Y.

2.1. Continuity of set-valued maps. We shall define here a notion

of continuity for set-valued maps through the following proposition:

Proposition 1. Let F' : X ~ Y be a set-valued map. The following

assertions are equivalent:
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(1) F is closed and the image of any conditionnally compact set by
F' is conditionnally compact.

(2) F is closed and the image of any compact set by F' is compact.

(3) For any compact set K C X, Fix is compact

(4) For any sequence x, € X converging to x, any sequence Y, €

F(zy) has a cluster point y € F(x).

In this proposition, Fjk is the restriction of F' to the compact K, i.e.,
the set-valued map Flx : K ~ Y that equals F' on K. If F' is single-
valued, these assertions are equivalent to continuity. We shall note
K(X,Y), or simply K if there is no ambiguity, the set of set-valued
maps satistying these properties. The proof of this proposition is easy
and is left to the reader. It follows from property (4) of the proposition
above that if F'€ K(X,Y) and G € K(Y,Z), then Go F € K(X, Z).

The following result generalizes a well-known result for continuous

single-valued maps:

Proposition 2. Let F € K(X,Y) taking connected values (i.e., F(z)
is connected for all x € X ). If A C Dom F is connected, then F(A) is

connected.

Let A be a connected subset of Dom F', and suppose B = F(A) is
not connected. Let U; C Y and U, C Y be a disconnection of B.
Define

Vi={zeX,Fz) CU}=X\F '(Y\U)

and V, in the same way. It can be seen that F~! maps closed sets
to closed sets, so that V; and V, are open. We have V; NV, = ) by

construction. We shall prove that

VinA=F1U)NA
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and the same equality for V,. Obviously enough VN A C F~1(U;)NA.
Suppose the equality does not hold. Then there is x € A such that
F(z)NU; # 0 but F(z) is not included in U;. But since F'(z) C U; UUs,
we must have F(z) N Uy # (B, which is impossible because F(x) is
connected. It follows that A C ViUV, ViNnA#Pand Vo A # 0, so
that V; and V5 are a disconnection of A, which is a contradiction.

We shall need the two following useful results:

o Let

IxX ~ 'Y

(t,z) — Fi(z)

a set-valued map in (I x X,Y), and let K C X be a compact
set. Then the set-valued map ¢ — Fi(K) is in (1, Y).

e Let F) a family of set-valued maps in IC(X,Y). Then the set-
valued map

F:xHﬂFA(x)

is in (X, Y).

The first result follows from the fact that ¢t — F;(K) is the compo-
sition of (¢,x) — Fy(x) and t — {t} x K, which are both in . The
second result follows from property (3) in proposition (1) and from the

observation that the graph of F' is the intersection of the graphs of F).

2.2. Set-valued extension of a monotone function. If f : R -+ R

is an increasing function, then we define its set-valued extension F' as
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Note that F~! is a non-decreasing continuous single-valued function
with plateaus. Then one can easily see that F' € I, and F(z) is a
compact interval for all x.

The last result we need is a set-valued version of the intermediate

value theorem and follows immediately from proposition 2:

Theorem 3. Let F € K(R,R), such that F(x) is a compact interval
for all z. Then for every (x,a) and (y,b) from the graph of F and every

real ¢ between a and b, there is z € F~'(c) lying between x and y.

This property is obviously unchanged by composition.
Last of all, we will define a few convenient notations. If A and B are

two subsets of R, then the sum A 4 B is defined naturally as

A+B={a+bla€ A,be B}

In the same way, % is the set of real numbers % with a € A, and we

shall write A 4+ x to mean A + {z}.

We shall write A < Bifa < bforalla € A and b € B. Thus if
F' is the set-valued extension of an increasing function f, then z <y
implies F'(z) < F(y). Note that if F' is the extension of an increasing
lift of an orientation preserving circle map, then F(z + 1) = F(z) + 1
for all x and F' projects to a compact set-valued circle map ® that is

orientation preserving.

3. THE ROTATION NUMBER

Let ¢ be an orientation preserving circle map and f an increasing lift
of ¢. Denote F' the set-valued extension of f and ® its projection on

the circle. From now on, we consider the extended dynamical system

Tn1 € F(zy,)
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and its projection on the circle
Tpi1 € P(zy)

A forward orbit under ® (resp. F) is a sequence (x,)nen such that
Tpi1 € ©(z,) (vesp. zp41 € F(zy,)) for all n. A backward orbit under
® (resp. F) is a forward orbit under ® ' (resp. F'). We will often

use the term orbit to mean forward orbit when there is no ambiguity.

3.1. Existence and uniqueness of the rotation number. The fol-

lowing proposition implies the first point of theorem 1:

Proposition 3. If F : R ~» R is the set-valued extension of an increas-
ing lift of an orientation preserving circle map, then for any sequence

Tpi1 € F(xy,), the following limit

ezrists and does not depend on the choice of the sequence. This limit is

called the rotation number of F'.

The proofin e.g. [2] applies almost directly to this case, but we shall
provide the reader with a different and easier proof because we will use
later the ideas involved in it. The proof is based on an idea of H. H.
Rugh [9].

Let

K=" ®
n
where id is the identity x — x. Because F™ — id is periodic, we have

K, = £=4([0,1]), and it follows from proposition 2 that K, is a

n

compact interval for all n. We shall prove that any sequence «,, € K,

converges to a unique limit «;, which is enough to prove proposition 3.
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Let 0 < z < y < 1. Since F™ is increasing, we have F"(z) < F"(y) <
F™(z) + 1 for any integer n, and therefore 0 < F"(y) — F"(z) < 1. It
follows that the length of K, is not greater than %, which implies the

uniqueness of «. The inclusion
m—1
Fr™ —id C Y (F" —id)o F™
k=0

holds for any integers n and m. Note that, unlike in the single-valued
case, the equality needs not hold because for a non-empty set A C R,
we only have 0 € A — A, but not A — A = {0}. Dividing both sides by
nm, it follows that K,,, C K, for all n and m because K, is convex.
Therefore K,,,, C K,,N K,,. Thus K, U K,,, is a compact interval with
length smaller than % + % It follows that any sequence o, € K, is
Cauchy, therefore converges. This common limit « is called the rotation
number.

The rotation number can also be characterized in the following way:

Lemma 1. We have

{a} = mKn

neN

where o 18 the rotation number.

Indeed, because the length of K, tends to 0, we have d(a, K,,) — 0
as n — +o00. Now choose n € N. We have d(«, K,,,) — 0 as m — +o0.
It follows from K, C K, that d(«, K,) = 0. Since K, is compact,
ae€ K,.

As noted in [6], proposition 3 is not true in general if f is discontin-

uous and only non-decreasing.
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3.2. Rational rotation number. To prove the second point of theo-
rem 1, we will need the following proposition, which is well-known for

homeomorphisms of the circle:

Proposition 4. o € Q if and only if ® has a periodic point, i.e., there

exist an integer n and a point of the circle x such that x € ®"(x).

This proposition was proved in [6] in a somewhat different formula-
tion. Lemma 1 makes this proposition trivial. Indeed let o = p/q. By
lemma 1, we have p/q € K, i.e., thereis x € R such that p € Fi(z)—z,
so that z € ®9(x).

The second point of theorem 1 follows from the proposition below:

Proposition 5. If a € Q, then all orbits under ® tend to a periodic

orbit with the same period '.

If « = p/q, then ®7 has a fixed point . Now consider a sequence
Tnt1 € ®I(x,). The proof is illustrated by figure 2. Consider the points
x, To and xq, and choose an orientation on the circle so that z; lies in
the arc from x to zy. The points x, x; and xy are sent respectively to
x, T9 and x1. Since ® preserves orientation, it follows that x4 lies in the
arc from z to x;. By induction, we can see that (x,) is a decreasing
sequence in the arc from = to zy, and therefore converges to a limit
z* (not necessarily z). Therefore, for any orbit z,,, € ®(z,) and for
every k € {0,...,k — 1}, the sequence z,,.) converges to a point zj.
Because @ is closed, we have z},, € ®(z}) (where k + 1 is modulo g).

Thus the limit points x} form a g-periodic orbit under ®.

lie., there is an integer ¢ such that if (z,) is an orbit under ®, there is a g¢-

periodic orbit (y,) such that d(z,,y,) tends to 0 as n tends to +o0.
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FIGURE 2. Proof of proposition 5

o
-

3.3. Irrational rotation number. Here we consider the case when
the rotation number « is irrational. The key to prove the third point
of theorem 1 is the following lemma, similar to a lemma for homeomor-

phisms in [2]:

Lemma 2. Suppose « € R\ Q. Let z, € ®?(zy) and A an arc with
ending points xoy and x,. Then any forward or backward orbit under ®

intersects A.

To prove this lemma, we only need the property that & preserves
orientation. Let (y,) be a forward orbit under ®, and consider the
sequence of points ¥y, Yntp, Ynt2p - - - Define an orientation on the circle
so that A is the arc from z, to x,. The point y,,, must lie in the
arc from y, to xz,, otherwise ®” would map the arc from zy to y, to

an arc included in it, which would imply that ®” has a fixed point.
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Suppose Yn+p ¢ A. Then, because ®7 is orientation preserving, ¥,i2p

must lie in the arc from y,, to z, (see figure 3). Going this way, we

FIGURE 3. Proof of lemma 2

Yn+p

can see that, as long as the sequence does not intersect A, we have
Yn+mp lying in the arc from ¥y, (m-1), to xo. If A was never reached,
then the sequence ¥, would converge, thus ®” would have a fixed
point, which contradicts the fact that « is irrational. Thus there is an
integer m such that y,4mp € A. The same reasoning applies for the
backward orbit, which proves the lemma.

Now we can prove the third point of theorem 1. The limit set of a

sequence is its set of cluster points.

Proposition 6. Suppose o € R\ Q. Then all orbits under ® have the

same limit set €2, which is either the circle or a Cantor set.
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Consider two orbits z,41 € ®(z,) and y,+1 € P(y,), and let z*

*

be a cluster point of the sequence (z,)nen, i.e., z* is the limit of a
subsequence (z,,). For each k, consider the smaller arc Ay with end-
points z,, and z,, . The length of A, tends to 0 as £ goes to infinity.
From lemma 2, we can find an increasing integer sequence my such that
Ym, € Ap. It follows that the sequence y,,, tends to z*. In the same
way, we can find a subsequence from a backward orbit y, € ®(yn41)
converging to z*. Thus forward and backward orbits under ® all have
the same limit set 2.

To prove that 2 is either the circle or a Cantor set, we shall use the

following proposition, the proof of which is left to the reader:

Proposition 7. Let X be a compact metric space and ® : X ~ X a
compact set-valued map. Let (x,)nen be an orbit under ® and 2 its set
of cluster points.

Then for any x € 2, there is a forward and backward orbit under ®
starting from x and staying in Q. In other words, for any x € 2, we

have:
P(x)NQ#0D
P z)NQ#D

Note that in the present case, since ® ! is single-valued, we have
o 1(Q) =Q.

The limit set 2 is compact by definition. Let x € €. It follows from
proposition 7 that its backward orbit is included in €2, and since z is
a cluster point of this orbit, it is not isolated in 2. Now suppose {2
contains an open set U, and let g € U. We can find n € N and a point
z, € ®"(x9) N U. We shall prove that 2 is the whole circle. Indeed,
for any point y € R/Z we can find a point y,, € ®™(y) that lies in
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the arc with ending points zy and z,, included in U, by lemma 2. We
have y,,, € Q, and since y = ®™(y,,), it follows that y € Q. Thus 2
is the whole circle. Otherwise, {2 has empty interior, and since it is a

compact set with no isolated point, it is a Cantor set.

4. FAMILIES OF ORIENTATION PRESERVING CIRCLE MAPS

In this section we will prove theorem 2, which we recall here:

Theorem 2 Let t — fi, t € [a,b], be a family of increasing discon-
tinuous lifts such that (t,z) — fi(z) is increasing with respect to each
variable and t — F} is continuous with the Haussdorff topology on the
graph of Fy, where Fy is the set-valued extension of f;. Let aft) be the

rotation number of f;. Then

(1) « is continuous and non-decreasing

(2) for all p/q € QNIma, o ' (p/q) is an interval containing more
than one point, unless it is {a} or {b}.

(3) « reaches every irrational number at most once

(4) « takes irrational values on a Cantor subset of [a,b], up to a

countable number of points.

By Cantor set, we mean a compact set with empty interior and no

isolated point.

4.1. Continuity of the rotation number. Consider a family f; of
increasing lifts of orientation preserving maps, and note F} their set-
valued extension. We require a condition of regularity. Uniform conti-
nuity is too restrictive, as it would not allow the points of discontinuities
to change. Instead, as the graph of F}, restricted to a single period,

is compact, we may endow the space of such set-valued maps with the
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Haussdorff topology and require ¢ — F; to be continuous in this topol-
ogy. This makes for instance the family ¢ — F(- + t) continuous. As
F' is a single-valued continuous map, this condition is equivalent to
requiring ¢ — F, ' to be uniformly continuous. We will actually use
an equivalent condition which is much more convenient: the set-valued
map (t,z) — Fi(z) is in K.

The rotation number is then found to be continuous with respect to

the parameter:

Proposition 8. Let f; be a family of increasing lifts of orientation
preserving maps, indexed on a metric space I, and F; their set-valued

extension. Assume that the set-valued map

IxR ~ R

(t,z) — Fyx)
is in IC. Then the map t — «(f;) is continuous.

This proposition is well-known in the case when f; is continuous. In
the present case, results from section 2 will provide us with an easy

proof. Define K,(t) = ££=%([0,1]), and recall from lemma 1 that

n

a(f;) = NK,(t). The set-valued map (¢,z) — F*(z) is in K for all

Fir(z)—x
n

n (by composition). Then the map (t,z) — %= shares the same
property for all n. It follows that ¢ — K, () is also in K for all n, so
that, by intersection, the single-valued map t — «(f;) is in K, which
means it is continuous.

Although proposition 8 restricts to families of lifts, it implies that
the rotation number is continuous with respect to the extension of the

lift in the Haussdorff topology on the graph. Indeed, this follows from
proposition 8 if we take I to be the compact space N = NU{+oco}: then
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(n,z) — F,(z) is in K means Graph(F,) converges to Graph(F, ) in
the Hausdorff topology, and n — «(f,) is continuous means «(f,)

tends to a(fio0o)-

4.2. Increasing families of lifts. Here we shall prove theorem 2 an-
nounced in the introduction. Recall that we consider a family of in-
creasing discontinuous lifts f; of orientation preserving circle maps,
indexed on an interval [a, b], such that (¢,z) — f;(x) is increasing with
respect to each variable and ¢ — F;} is continuous with the Haussdorff
topology on the graph of F;. This means that (¢,z) — Fi(z) is in K.

Note that the theorem would not hold without the hypothesis f;
discontinuous, because then the circle maps may be conjugated with
rotations even for rational rotation numbers, for example: fi(z) = xz+t
(points 2 and 4 of the theorem do not hold).

Denote «(t) the rotation number of f;. We shall prove each point of

theorem 2:

(1) We already proved that « is continuous. By induction, for s > t,
we have for all x and ¢: fI'(z) > f*(z). It follows that a(s) >
a(t), i.e., a is non-decreasing.

(2) Let p/q € QNIma. Because « is continuous and non-decreasing,
a~'(p/q) is a closed interval. Let t € a~'(p/q). We know
from the proof of proposition 4 that there is an x such that
x +p € Fi(x). Since f! is not continuous, we cannot have
F} =id + p, so there is another point y ¢ F}(y) — p (see figure
4). Suppose F/(y) — y — p contains a positive real (the other
case is treated in the same way). Now choose h > 0. We have
F! ,(z) —z — p < 0 by monotonicity (i.e., all reals in this set

are negative). If F}! , (y) —y—p contains non-negative numbers,
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FIGURE 4. a~!(p/q) contains more than one point
q
by
p+1
Y
i
p

then by theorem 3, there is a z such that 0 € F ,(z) —z —p, so
that a(t — h) = p/q. Otherwise, again by theorem 3, there is a
u €]t — h, t] such that 0 € F(y) —y — p, so that a(u) = p/q. It
follows that a~!(p/q) is a closed interval containing more than
one point.

Let ¢ € [a,b] such that «(t) is irrational. We shall prove that
we can find a u € [a, b] arbitrarily close to ¢ such that a(u) is
rational, since it implies that o cannot reach «f(t) twice. The
extension F; projects to a set-valued circle map ®,. Let y be in
the limit set of ®, and note 2* = ®; ' (y). Since y is also a cluster
point of the backward orbit of z*, for any A > 0, either the arc
[y,y+ h] or [y — h,y] (once the circle is oriented) intersects the

backward orbit of z*. Suppose the former case (the latter case
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is treated similarly) and choose h > 0. Define the set-valued

map

U :R/Z ~ R/Z

U(z) = U b, ()

u€t,t+h]

which is in I and ¥(z) is a closed arc for all z by proposition
2. It follows from the hypothesis of monotonicity and theorem

3 that for any n € N:

)= |J o)

u€lt,t+h]

Denote A = W¥(z*), which is an arc containing y (see figure
5). It follows that for some integer p, ®,7(z*) € A, so that
T* € UP(A), ie., * € UPT(z*). This means precisely that for
some u € [t,t+h], z* € PPT(z*), so a(u) is rational. Therefore
« reaches any irrational number at most once.

(4) The set K = [a,b] \ Int o (Q) differs from o (R \ Q) by
countably many points. K is compact. From the continuity of
«, none of its points is isolated. Suppose it contains an open
interval J. Since a(J) is not reduced to a single point, it must
contain a rational number p/q. But this is impossible because
a1(p/q) is a closed interval containing more than one point.
Thus K has empty interior, and since it is compact and has no

isolated point, it is a Cantor set.

Note that the theorem we just proved does not need any regularity

requirements apart from continuity of the family.
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FIGURE 5. « reaches every irrational number at most once
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