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Abstract

Neural networks can be simulated exactly using event-driven strategies,
in which the algorithm advances directly from one spike to the next spike.
It applies to neuron models for which we have 1) an explicit expression for
the evolution of the state variables between spikes and 2) an explicit test on
the state variables which predicts whether and when a spike will be emitted.
In a previous work, we proposed a method which allows exact simulation
of an integrate-and-fire model with exponential conductances, with the con-
straint of a single synaptic time constant. In this note we propose a method,
based on polynomial root finding, which applies to integrate-and-fire mod-
els with exponential currents, with possibly many different synaptic time
constants. Models can include biexponential synaptic currents and spike-
triggered adaptation currents.

Keywords: integrate-and-fire, numerical methods, spiking neurons, event-driven,
simulation

1 Introduction
General event-driven strategies have been devised for the case when spikes can be
emitted only at times of incoming spikes (Mattia & Del Giudice, 2000). The rel-
evant models are mostly simple pulse-coupled integrate-and-fire models, but it is
also possible to include the effect of synaptic conductances (Rudolph & Destexhe,
2006). Event-driven strategies can be extended to the more realistic case when
outgoing spikes are delayed (Rochel & Martinez, 2003; Lee & Farhat, 2001), by
using provisory events which can be cancelled by incoming spikes. However,
fitting neuron models to the requirements of exact event-driven simulation is gen-
erally not trivial, because one needs a guaranteed method that predicts whether
and when a spike will be emitted given the present values of the state variables.
In a previous work, we devised a method which allows exact event-driven simula-
tion of integrate-and-fire models with exponential synaptic conductances (Brette,
2006), but it was limited to the case when all synaptic time constants are identical.
Here we turn to integrate-and-fire models with exponential synaptic currents, in
which the membrane potential V and the synaptic inputs Ii evolve according to
the following system of differential equations:
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τV ′ = V0 − V +
k∑

i=1

Ii

τ1I
′
1 = −I1

τ2I
′
2 = −I2

. . .

τkI
′
k = −Ik

where V0 is the rest potential, τ is the membrane time constant, and τi are the
synaptic time constants (note that for the sake of clarity, we have not included the
membrane resistance; it is contained in the inputs Ii, which have the dimension
of voltages). Incoming spikes trigger instantaneous additive changes in one or
several input variables Ij , and an outgoing spike is emitted when V = Vt, upon
when the voltage is reset (V → Vr). This formalism includes: 1) exponential
synaptic currents; 2) biexponential synaptic currents (exp(−t/τ1) − exp(−t/τ2),
simply use two variables Ii); 3) exponential adaptation currents (each outgoing
spike triggers a negative exponential current).

Since the differential system is linear, it can be solved analytically in intervals
with no spike:

V (t) = V0 + (V (0)− V0)e
−t/τ +

k∑
i=1

Ii(0)
τi

τ − τi

(e−t/τ − e−t/τi) (1)

It is however not trivial to tell whether and when V (t) will cross the threshold
Vt for a given initial state (V (0), I1(0), . . . , Ik(0)). Figure 1.A shows the three
difficulties than can arise (here with a response to a biexponential current): 1)
evaluating the trajectory at the end of a short interval (as in discrete-time simu-
lations) can miss the threshold crossing; 2) there are in general several threshold
crossings; 3) non-linear root finding methods (e.g. Newton-Raphson) may not
converge or may converge to the wrong crossing time, because the trajectory of
V (t) is not concave. Our contribution in this note is to describe a method which
tells with 100% certainty whether and when a threshold crossing will occur given
an initial state. The method relies on polynomial root finding algorithms and ap-
plies to the case when the time constants are commensurable (i.e., they are related
to each other by rational factors), which is the case in practice.
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2 Spike timing computation

2.1 Polynomial formulation
Let τlcm be the least common multiple of τ , τ1, . . . , τk. Define c, c1, . . . , ck the
integers such that τlcm = cτ and τlcm = ciτi for all i, and let x = e−t/τlcm . Then
V (t) (Equation 1) is the value of a polynomial at x, and finding t > 0 such that
V (t) = Vt means finding a root in [0, 1] of the polynomial P defined by:

P (X) = V0−Vt+

(
V (0)− V0 +

k∑
i=1

Ii(0)
τi

τ − τi

)
Xc−

k∑
i=1

Ii(0)
τi

τ − τi

Xci (2)

2.2 The spike test
There are several algorithms to compute the number of roots of a real polynomial
in a given interval [a, b] (Collins & Loos, 1983; Pan, 1992; Mignotte & Stefanescu,
1999). The most popular one is based on Sturm sequences, which we briefly
describe here.

Define F0 = P , F1 = P ′ and for i > 1,−Fi is the remainder of the Eu-
clidian division of Fi−2 by Fi−1. The sequence terminates in m ≤ n steps
(where n is the degree of P ). Then the number of roots of P in any interval
[a, b] is S(a) − S(b), where S(x) is the number of sign changes in the sequence
[F0(x), F1(x), .., Fm(x)]. Note that in the present case, evaluation of the polyno-
mials is simple since Fi(0) is the constant coefficient of Fi and Fi(1) is the sum of
all coefficients. Thus, Sturm’s algorithm provides us with a O(1) (constant time)
method to decide whether a spike will occur.

2.3 Computation of spike timing
Computing the spike timing means finding the largest root of P in [0, 1]. Sturm’s
algorithm also answers this problem. One can use for example a simple bisec-
tion method: divide the interval in two; select the right-hand interval if it contains
a root (calculate S(a) − S(b) as above), otherwise select the left-hand interval;
iterate until the required precision is reached. The number of iterations is pro-
portional to the number of digits. Convergence can be accelerated using a hybrid
bisection/Newton-Raphson method.
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2.4 A quicker spike test
Although the spike test based on Sturm sequences requires a constant number of
operations, it is useful to have a faster test because an event-driven simulator will
call the spike test every time an incoming spike is received.

It turns out that in balanced networks the answer of the spike test is negative
most of the time because the average input current is subthreshold. In the model
considered in (Brette, 2006), we showed that most of the time, simple inequalities
could discard the possibility of a spike. Here we describe a simple test based on
another standard algorithm for polynomials, Descartes’ rule of signs (Collins &
Loos, 1983).

Consider a polynomial with real coefficients:

P (X) = a0 + a1X + a2X
2 + . . . anX

n

According to Descartes’ rule of signs, the number of positive roots of P does not
exceed the number of sign changes in the sequence a0, a1, . . . , an (null coefficients
are discarded). In the present case, we know that the number of roots in [0, 1] is
even because P (0) < 0 and P (1) < 0 (provided V0 < Vt). Therefore if Descartes’
rule of signs predicts at most 0 or 1 root, then we know that there is none in [0, 1].
If the maximum number of roots predicted by the rule is 2 or more, then we must
use the full Sturm’s algorithm in order to obtain a certain answer.

In practice, this method is useful when there are exponential excitatory and
inhibitory currents for which the excitatory time constant τe is smaller than the
inhibitory time constant τi (which is fortunately the typical case). Then we can
see from Equation 2 that Descartes’s rule of signs predicts that no spike will occur
if

V (0)− V0 + Ie(0)
τe

τ − τe

+ Ii(0)
τi

τ − τi

≤ 0

The rule also applies when there is a slow adaptation current (τa > τ ).

3 Example and discussion

3.1 A network of excitatory and inhibitory neurons
In order to illustrate our method, we simulated a randomly connected network
(connection probability 20%) of 250 excitatory and 150 inhibitory integrate-fire
neurons, with models described in (Vogels & Abbott, 2005); the network was
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driven by excitatory and inhibitory external events, modelled as Poisson spike
trains (rates were 500 Hz). Synaptic currents were exponential, with excitatory
time constant τe = 5 ms and inhibitory time constant τi = 10 ms. The membrane
time constant is τ = 20 ms, so that τlcm = 20 ms = τ = 4τe = 2τi.

The code is available at http://www.di.ens.fr/˜brette/papers/
Brette2006NC.htm. We implemented our algorithm in C++ and compared it
with a clock-driven algorithm with exact subthreshold integration and timestep
dt= 0.1 ms (i.e., the differential equations are integrated exactly, but spike times
are bound to a discrete time grid). The event-driven implementation is quite com-
plex because it involves a queue management system and polynomial operations,
so we also provide an implementation with Scilab, a free vector-based scientific
software developed by INRIA and ENPC (http://www.scilab.org) which
has built-in polynomial functions (note that the simulation is much slower with
Scilab because programs are interpreted).

Figure 1.B shows that 97% of the time, the outcome of the spike test is nega-
tive, and that the simple test based on Descartes’s rule of signs is negative 90% of
the time, so that the Sturm sequence is calculated in only 10% of the cases. We
simulated the network model for 10 min of biological time; the simulation time
was about 20 min for the event-driven implementation and 5 min for the clock-
driven implementation. The average firing rate of the network was about 8 Hz in
both cases. However, Figure 1.D shows that the time-varying population rate in
the clock-driven simulation lacked high frequencies (> 100 Hz), compared to the
exact event-driven simulation (consistently, the high frequency power increased
with decreasing dt).

3.2 Perspectives
We have described a method to implement current-based integrate-and-fire models
with exponential (or biexponential) currents in an exact event-driven fashion. Our
method also applies to models with spike-triggered adaptation (which is formally
equivalent to an inhibitory self-connection). An important and difficult extension
would be to design methods to simulate two-variable models such as those of
Izhikevich (Izhikevich, 2003) and Brette and Gerstner (Brette & Gerstner, 2005),
which are more realistic because the threshold is “soft” (with a quadratic or expo-
nential term in the first differential equation).
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Figure legend
Exact simulation of current-based integrate-and-fire models. A. Response of an
integrate-and-fire model to a biexponential synaptic current (here membrane time
constant is 20 ms, synaptic time constants are 3 ms et 7 ms). The horizontal line
is the threshold potential (Vt). B. Statistics of the outcome of the spike test in
the random network model. C. Architecture of the network model (see text). D.
Power spectral density of the firing rate of the network simulated for 10 min with
the present event-driven algorithm (thick line) and with clock-driven integration
with timestep 0.1 ms (dashed line).
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