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Abstract

I consider spiking neuron models defined by a one-dimensional dif-
ferential equation and a reset — i.e., neuron models of the integrate-
and-fire type. I address the question of the existence and uniqueness
of a solution on R for a given initial condition. It turns out that the
reset introduces a countable and ordered set of backward solutions for
a given initial condition. I discuss the implications of these mathemat-
ical results in terms of neural coding and spike timing precision.

Keywords: integrate-and-fire; Cauchy problem; spike timing precision;
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1 Introduction

The integrate-and-fire model was originally introduced by Lapicque (1907)
as a phenomenological description of the initiation of an action potential
following current injection in a nerve. It consists of a simple linear electrical
circuit and a threshold for spike initiation. Although the biophysics of action
potential generation are known in much more details since the works of
Hodgkin and Huxley (1952), variations of the integrate-and-fire model, also
named spiking neuron models (Gerstner and Kistler, 2002), are still widely
used in computational neuroscience, because of their relative simplicity. A
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one-dimensional spiking neuron model is defined by a differential equation
governing the dynamics of the membrane potential x:

dx

dt
= f(x, t) (1)

and a reset: when x(t) reaches a threshold xt (t for threshold, not to be
confused with the time variable), then a spike is produced and x(·) is in-
stantaneously reset to xr. Up to a change of variables, one can set xt = 1 and
xr = 0. The conditional reset makes this model a hybrid dynamical system.
Surprisingly, we are still lacking some elementary mathematical information
on this class of models. In particular, the question of whether there exists a
unique solution for a given initial condition (the Cauchy problem) has never
been answered. I will address this problem in this paper, starting with a
few definitions. The present study only addresses one-dimensional models
— higher-dimensional ones are important but much harder to tackle.

We assume that the differential equation (without reset) admits a flow
on R. I previously showed that two particular classes of spiking models have
especially interesting properties (Brette and Guigon, 2003; Brette, 2004):

• leaky models, such that ∂f
∂x ≤ α < 0;

• reflecting models, such that f(0, t) > 0 for all t.

Standard integrate-and-fire models are leaky (and ∂f
∂x = −g/C, where g is

the total conductance and C is the membrane capacitance), the quadratic
model (Ermentrout and Kopell, 1986) is reflecting. In particular, these
models have a unique firing rate (independent of initial condition). A typi-
cal integrate-and-fire model with synaptic conductances is governed by the
following equation:

C
dV

dt
= −gL(V − EL)−

∑
i

∑
ti

gi(t− ti)(V − Ei)

which describes a leaky model (C is the membrane capacitance, V is mem-
brane potential, gL is the leak conductance, EL is the leak reversal potential,
i indexes the synapses, ti indexes the timings of incoming spikes at synapse
i, Ei is the reversal potential and gi(·) is the post-synaptic conductance at
synapse i).

An important mathematical object for these models is the spike map ϕ,
which is defined such that a spike train produced by the model is the orbit
of the first spike time under ϕ (Fig. 1). More precisely, ϕ(t) is the minimal

2



s ≥ t such that the forward solution starting at (t, 0) reaches 1 at time s.
For leaky and reflecting models, the spike map is (strictly) increasing on
its range but often discontinuous. General properties of the spike map are
presented in more details in Brette (2004).

0
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x(.)

t ϕ(t) ϕ2(t) 

Figure 1: The spike map ϕ: ϕ(t) is the time of the next spike for a trajectory
starting from reset at time t.

Because equation (1) defines a flow, the spiking dynamical system al-
ways admits a semi-flow for positive time (i.e., unique forward solutions),
but because of the resets, it may not admit a flow (i.e., unique solutions
defined on R). The question of existence and uniqueness of solutions on
R for a given initial condition (the Cauchy problem) is not only of mathe-
matical interest, but it also has important implications in terms of neural
coding. Indeed, consider that equation (1) reflects the synaptic integration
of a number of input spike trains, which are then encoded in an output
spike train via the reset mechanism (as in the example). The set of possible
output spike trains in response to the given input spike trains corresponds
to the set of solutions defined on R (Fig. 2). In section 2, I solve the
Cauchy problem by describing the structure of backward spiking trajecto-
ries. In section 3, I argue that the set of meaningful solutions on R is in
general not very large and I conjecture that for random realizations of input
spike trains, the spiking dynamical system actually defines a single-valued
function input spike trains 7→ output spike train.
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x(.)

Input spike trains

Output spike train

dx/dt=f(x,t)

Figure 2: Encoding of input spike trains into a spiking output by an
integrate-and-fire model. The output is defined via a differential equation
and thus, depend on the initial state.

2 The Cauchy problem

Existence

Let us consider the set S of solutions x(·) of the spiking dynamical system
defined on R, i.e.,

S = {x(·) ∈ X| ∀t, x(t) = 1 ⇒ x(t+) = 0

and x(t) 6= 1 ⇒ dx

dt
(t) = f(x, t)}
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where X is the set of right-continuous real functions. In the following, we
assume that any finite interval contains a finite number of discontinuities
(spikes), which is the case for example if f is bounded on compact sets
(e.g., continuous) 1. We examine the solutions x(·) ∈ S that satisfy a given
initial condition x(t0) = x0. By construction, there is a unique solution on
[t0,+∞[, which we shall call the forward solution 2. However, a backward
solution on ] −∞, t0] does not necessarily exist. For example, consider the
(continuous) solution u(·) to equation (1) such that u(t0) = x0; if there is an
s < t0 such that u(s) = 1 and u(t) > 0 on [s, t0], then clearly there can be
no backward solution, and thus no solution on R (Fig. 3A). The following
theorem makes this remark more precise:

Theorem 1 (Existence). Let (x0, t0) be an initial condition (x0 < 1) and let
u(·) be the (non-spiking) solution to equation (1) such that u(t0) = x0. There
is a solution to the spiking dynamical system on R with initial condition
(x0, t0) if and only if u(t) < 1 for all t < t0.

Theorem 1 holds for any one-dimensional model (even non leaky and
non reflecting).

Proof. If u(·) is such that u(t) < 1 for all t < t0, then it is an admissible
spiking solution on R, therefore there is a spiking solution on R. Assume
there is t1 < t0 such that u(t1) = 1, and suppose there is a spiking solution
x(·) on R such that x(t0) = x0 = u(t0) (Fig. 3B). On any interval where
x(·) is continuous, the sign of x(·) − u(·) cannot change, since trajectories
cannot cross. When a spike occurs at time t, the difference changes by one:
(x(t+) − u(t+)) = (x(t) − u(t)) − 1. It follows that at time t1, the value
of x(t1) is at least u(t1) = 1 plus the number of spikes in [t1, t0], therefore

1Consider a point t1 such that x(t1) = 1, and let t0 = {sup t < t1|x(t+) = 0}. Because
x(·) is right-continuous, we must have t0 < t1 (otherwise x(t1) = 0). It follows that
x(·) satisfies the differential equation in ]t0, t1[, which implies that there is x0 ∈ [0, 1] and
t ∈]t0, t1[ such that f(x, t) ≥ 1/(t1−t0). It follows that if the set {t ∈ [a, b]|x(t) = 1} ([a, b]
is a given finite interval) has a cluster point then there is a sequence of points (xn, tn) in
[0, 1]× [a, b] such that f(xn, tn) tends to infinity.

2The uniqueness property comes from the fact that the differential equation defines
a flow on R: indeed suppose there are two different forward solutions x1(·) and x2(·)
with identical initial conditions, and let t∗ = sup{t ≥ t0|x1(t) = x2(t)}. Because of the
flow property, t∗ must be a discontinuity point for at least one of the solutions, so that
x1(t

∗) = x2(t
∗) = 1. By construction, this must be a discontinuity point for both solutions,

i.e., we must have x1(t
∗+) = x2(t

∗+) = 0, which is contradictory with the definition of t∗.
This may not happen for backward solutions because x(t+) = 0 implies either x(t) = 1 or
x(t) = 0 (not only the former assertion).

5



x(t1) > 1, which is a contradiction. Thus there can be no spiking solution
x(·).

splitting points

1

0
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(x0,t0)

(x0,t0)
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Figure 3: Backward solutions. A. Case with no backward solution from
(x0, t0). B. Graphical proof of theorem 1. C. Construction of backward
trajectories by splitting at reset.

Structure of the set of solutions

When a backward solution exists, it is in general not unique. A construction
of a set of backward solutions is sketched in Fig. 3C: every time a back-
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ward trajectory reaches 0, it can split between a continuous and a spiking
trajectory. The following theorem makes this statement more precise:

Theorem 2 (Structure of solutions on R). Assume the model is leaky or
reflecting. Let (x0, t0) be an initial condition (x0 < 1). There is a countable
set of solutions to the spiking dynamical system on R satisfying the initial
condition. Let N ∈ N∪{∞} be the number of solutions. There is a decreasing
sequence of times sN−1 < . . . < s2 < s1 ≤ t0 such that the set of spike times
of every backward solution is {sk, . . . , s2, s1} for some k ≤ N − 1.

The integer N is called the degree of the initial condition (x0, t0), and
the solution with N − 1 spikes is called the maximal solution.

Note that a solution to a spiking dynamical system is uniquely defined
by its set of spike times. We may rephrase theorem 2 as follows: if A and
B are the sets of spike times of two spiking solutions with the same initial
condition and inf A ≤ inf B, then B = A ∩ [inf B,+∞[.

Proof. Consider two spiking solutions x(·) and y(·) on R such that x(t0) =
y(t0) = x0. We first note that if x(t1) = y(t1) at some time t1, then the
two solutions coincide on [t1,+∞[. Define t1 = inf{t ∈ R, x(t) = y(t)}.
One of the solutions must spike at time t1, say x(·), so that x(t1) = 1 and
y(t1) = x(t+1 ) = 0. We will now consider the two hypotheses and show that
y(·) can have no spike before t1.

Suppose the model is reflecting. Then the continuous solution v(·) such
that v(t1) = y(t1) is such that v(t) < 0 for all t < t1, so that y(·) can have
no spike before t1 and coincides with v(·) on ]−∞, t1].

Suppose the model is leaky. We have x(t1) − y(t1) = 1. Suppose y(·)
spikes before t1 and let t2 be the time of the last spike before t1. Because
of the leak hypothesis, we must have x(t+2 ) − y(t+2 ) > x(t1) − y(t1), i.e.,
x(t+2 ) > 1, which is impossible.

It follows that the set of solutions is totally ordered with respect to the
inclusion of their sets of spike times, so that the number of (backward)
spikes uniquely characterizes the solution. The existence of all intermediate
numbers of spikes follows from theorem 1 (there is a continuous backward
solution starting from every (1, ts) where ts is a spike time of a spiking
solution, such that u(t) < 1 for all t < ts). The set of solutions can be con-
structed as follows: start from (x0, t0) and follow the differential equation
backward until x(t) = 0 and the initial conditon (1, t) satisfies theorem 1.
The continuous solution with initial condition (0, t) is the spiking solution
with one (backward) spike; continuing the solution x(·) from (1, t) and reit-
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erating the process gives spiking solutions with successive numbers of spikes
(as shown in figure 3C).

Bounded solutions

A physiologically meaningful solution should be bounded, since the mem-
brane potential is constrained by the reversal potentials of ions. We shall
define a model as silent before some time t0 if no solution on R can spike be-
fore t0 (in some sense, the stimulation starts after t0). For non-silent models,
the physiologically realistic solutions are the solutions with infinitely many
spikes on R−:

Proposition 1 (Bounded solutions). We assume the model is leaky and f
is bounded. Then a solution is bounded if and only if it has infinitely many
spikes on R−, unless the model is silent before some time t0. Consequently,
there is a bounded solution on R with initial condition (x0, t0) if an only if
the condition has infinite degree.

Thus, for a given equation (1), i.e., for a given set of inputs, the set of
solutions with infinitely many spikes on R− defines the possible outputs of
the neuron model. It follows from theorem 2 that, under the assumptions
of the proposition above, there is at most one bounded spiking solution on
R for any given initial condition.

Proof. Consider a spiking solution x(·) with finitely many spikes on R, so
that there is no spike before t0. Since the model is not silent, some solution
spikes at time t1 < t0. It follows from theorem 1 that the continuous solution
u(·) with initial condition (1, t1) satisfies u(t) < 1 for all t < t1. From the
leak hypothesis, we know that u(t)−x(t) > (u(t1)−x(t1)) exp(α(t1− t)) for
all t < t1. Therefore lim inf x = −∞.

Consider a spiking solution x(·) with infinitely many spikes on R−. Let
(tn) be the sequence of spikes and

mn = min
t∈[tn,tn+1[

x(t)

The minimum mn is either 0 or mn = x(sn), where sn ∈]tn, tn+1[ and
f(sn,mn) = 0. It follows from the leak hypothesis that f(sn, 1) ≤ α(1−mn)
(and α < 0). If x(·) is not bounded, then lim inf mn = −∞, which implies
that lim inf f(sn, 1) = −∞. This implication contradicts the assumption
that f is bounded.

8



3 Implications for neural coding

The set of admissible spike times

Our interest for solutions on R can be rephrased as follows. Since an
integrate-and-fire model transforms input spike trains into an output spike
train through a dynamic state variable, its output for a given set of inputs
depends on its state at some point (the initial condition). However, we have
seen that not all states are possible if we consider that the neuron has a past;
only initial conditions with an infinite degree lead to bounded solutions on
R, which constrains the possible outputs of the model.

What is the set Ω of times t such that there is a bounded solution spiking
at time t, in other words, what is the set of admissible spike times? In terms
of the spike map ϕ defined in section 1, and since a bounded solution has
infinitely many spikes on R− (except for silent models), it can be written
simply as:

Ω =
⋂
n

ϕn(R)

This is the intersection of a decreasing sequence of sets. When ϕ is contin-
uous, we simply have Ω = R, i.e., any spike time is admissible. This is so
when f(1, t) > 0 for all t ∈ R, as showed in Brette (2004). In terms of the
membrane equation, that inequality means that the current at threshold
is positive at all times, which is a very strong assumption. This is not a
physiologically plausible situation for cortical neurons. In particular, recent
physiological data indicate that the distribution of the membrane potential
and of the membrane current (CdV/dt) are approximately Gaussian (Des-
texhe et al, 2003) and that spikes are triggered by fast fluctuations of that
current, the average of which is far from threshold (Piwkoswka et al, 2007).
In terms of spiking models, this fact means that most of the time f(1, t) < 0,
and we know that ϕ(R) ⊂ {t ∈ R|f(1, t) ≥ 0} (Brette, 2004) — this result
comes the simple fact that the derivative of a solution cannot be negative at
spike time. Thus, ϕ(R) is already a small set, which suggests that Ω is much
smaller. In a previous paper (Brette and Guigon, 2003), I showed that such
a construction generally leaves only a finite number of solutions for periodic
inputs, and seems to leave a single solution for aperiodic inputs (realizations
of noise), although this latter fact is still lacking a rigorous proof.

Thus, I conjecture that a leaky spiking model defined by equation 1,
where f is determined by a given realization of random inputs, has a sin-
gle solution on R with probability 1, which determines its unique output to
the given inputs. In this way, spiking neuron models encode their inputs
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into specific sequences of precisely timed spikes. This conjecture is consis-
tent with the experimental finding that cortical neuron respond reliably to
time-varying currents injected in vitro at the soma (Mainen and Sejnowski,
1995). An interesting way to phrase this conjecture is to state that the
transformation input spike trains 7→ output spike train defined by the leaky
spiking model is a function (restricted on some input set of full measure). I
give a sketch of the proof of a weak version of this conjecture in appendix B.
I must emphasize that the conjecture is loosely defined, in that the precise
hypotheses for the random inputs is to be found. In particular, it would not
apply in general to periodic inputs (see e.g. Brette and Guigon, 2003), but
I predict that it would include stationary shot noise and diffusion processes
for both current and conductance inputs (i.e., additive or multiplicative).

Numerical example

In order to illustrate this conjecture in a realistic setting, I compute the
degrees of initial conditions for the following integrate-and-fire model:

C
dV

dt
= −gL(V − EL)− ge(t)(V − Ee)− gi(t)(V − Ei)

where the parameter values are taken from Brette and Gerstner (2005), and
ge and gi are excitatory and inhibitory fluctuating synaptic conductances
(mimicking synaptic activity in vivo), with parameter values typical of a
low rate high-conductance state (Table 1, first line of HC set in Brette and
Gerstner, 2005). The slope factor ∆T is zero (the spike threshold is sharp).
From the membrane equation, we can see that the membrane current at
threshold is normally distributed with mean µ and standard deviation σ as
follows:

µ = gL(EL + Ee + 3Ei − 5VT ) = −43.6mV × gL

σ = gL

√
1
4
(VT − Ee)2 + (VT − Ei)2 = 35.2mV × gL

Then the probability that the current be positive at threshold is

1√
2π

∫ +∞

−µ/σ
exp(−x2

2
) ≈ 0.11

Thus, the current at threshold is negative almost 90% of the time. This fact
implies that at least 90% of points (1, t) have degree zero. Given that the
correlation time constant of synaptic currents is much shorter than the typ-
ical duration of an interspike interval, we might expect that the probability
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of that a point has degree at least n decreases geometrically as pn. Fig. 4
shows the distribution of degrees for random initial conditions, which agrees
with our prediction with p = 0.6, and more than 95% of points have degree
zero. For example, 99.999% of points have degree less than 10. In other
words, the 10th spike of any solution occurs in an extremely small area of
the time axis, i.e., the timing of spikes is very precise.

The algorithm to calculate the degrees is described in appendix A.
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Figure 4: Distribution of the degrees of initial conditions for a leaky
integrate-and-fire model with fluctuating synaptic conductances. The de-
grees were computed for 107 sample random points (1, t). More than 95%
points have degree zero. The probability of positive degrees n scales as 0.6n.

4 Discussion

In this paper, I have considered the problem of solutions on R with a given
initial condition for one-dimensional spiking models, i.e., the problem of
backward solutions, since forward solutions always uniquely exist for a given
initial condition. It appears that, contrary to the case of the non-spiking
differential equation, neither existence nor uniqueness is granted for the
spiking model. Theorem 1 gives a simple necessary and sufficient condition
for existence, and theorem 2 shows that one can construct all solutions by
discarding an initial part of a unique maximal solution. In particular, for
any initial condition, there is at most one solution with infinitely many
spikes on R−, which is the unique bounded solution under the assumptions
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of proposition 1. In appendix A, I describe an algorithm to calculate the
number of spiking solutions and the maximal solution for a given initial
condition. Finally, I showed that, from previous studies on the reliability of
spike timing (Brette and Guigon, 2003), we would expect the set of bounded
solutions to be a singleton in many cases (or perhaps a set of null measure).
This would make the transformation input spike trains 7→ output spike train
a function. This point is still lacking a sound mathematical proof in general
cases, but the result of appendix B is probably a good starting point.

The framework I presented applies to realizations of random processes
which satisfy the hypotheses of this study (e.g. the leak hypothesis), includ-
ing current noise and conductance (multiplicative) noise. Also, although the
non-spiking dynamical system was defined with a differential equation, the
results can be extended to realizations of discontinuous random processes
because the core assumption is the existence of a flow for the process. The
leak hypothesis can also be expressed without derivatives by writing the
integral formulation of the hypothesis.

A more complete mathematical theory of spiking neuron models should
include a special treatment of divergent models. Divergent models are spik-
ing models in which spikes are generated when the membrane potential
diverges to infinity, that is, when the threshold is +∞. There are presently
three such models in the litterature: the quadratic model (Ermentrout and
Kopell, 1986), the exponential model (Fourcaud-Trocmé et al, 2003) and
the quartic model (Touboul, 2007). In particular, an augmented exponen-
tial model has been shown to be a good integrate-and-fire approximation
for detailed biophysical models (Brette and Gerstner, 2005) and for real
cortical neurons (Pospischil et al, 2007). Future work should focus on the
specificities of these models. Finally, the present study only applies to one-
dimensional models. Higher-dimensional models (even bidimensional) are
much harder to tackle, because many arguments for the one-dimensional
case relied on the property that solutions of the differential equation cannot
cross. It would be very interesting to extend these results to bi-dimensional
models (e.g., with a second adaptive equation).
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A Numerical calculation of the maximum degree
of an initial condition

In this appendix, I briefly explain how to calculate numerically the maximum
degree of an initial condition in the case of the numerical example of section
3. For a given initial condition, we compute the backward (continuous)
trajectory u(·) by numerically integrating the differential equation and use
the following lemma:

Lemma 1. Suppose that the model is leaky, not silent and that f(x, t) > 0
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if x > xm for some value xm. Let u(·) be the continuous solution of the
differential equation with initial condition (x0, t0) (x0 < 1).

• The degree of (x0, t0) is zero if and only if there is a time t < t∗ such
that u(t) = 1.

• The degree of (x0, t0) is positive if and only if there is a time t < t∗

such that u(t) = xm and there is no s ∈ [t, t0] verifying u(s) = 1. (then
u(s) < xm for all s < t).

In the case of an integrate-and-fire model with synaptic conductances,
xm is the minimum of all reversal potentials. In the case of the numerical
example of section 3, xm = Ei. We follow the trajectory u(·) backward until
it reaches 1 or xm. If it reaches 1, the algorithm stops and the degree is zero.
If it reaches xm, we know that the degree is positive. The degree is at least 2
if and only if the backward trajectory can split at some time s ∈ [t, t0] such
that (1, s) has positive degree, and the splitting point is unique by theorem
2. It is such that u(s) = 0 and (1, s) has positive degree. If there is no such
point, then the degree is 1 and the algorithm stops. If there is a splitting
point s, then the degree of (x0, t0) is the degree of (1, s) plus one, and is
defined recursively.

Proof. The first point of the lemma is simply theorem 1. Suppose that the
degree of (x0, t0) is positive. Then u(s) < 1 for all s < t0, and, according
to prop 1, u(·) is not bounded on R−. It follows that there is a t < t0 such
that x(t) = xm. Conversely, if there is a t < t0 such that x(t) = xm, then
u(s) < xm for all s < t because of the hypothesis on f so that u(·) defines a
valid spiking solution on ]−∞, t0] if there is no s ∈ [t, t0] verifying u(s) = 1.
Therefore the degree of (x0, t0) is positive.

The computation of the degrees can be accelerated thanks to the follow-
ing lemma:

Lemma 2. Let (x0, t0) be an initial condition with degree zero, and u(·) the
corresponding continuous solution. Then any point (x, t) such that t > t0
and x > u(t) (above the graph of u(·)) has degree zero.

In particular, if one follows the (forward) continuous solution u(·) start-
ing from an initial condition (1, t0) such that f(1, t0) < 0, then all points
(1, t) such that t > t0 and u(t) < 1 have degree zero. With balanced synap-
tic input and short time constant, this condition is fulfilled most of the time
and the remaining set is already rather small.
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Proof. Consider the backward spiking solution x(·) starting from (x, t). Fol-
lowing the trajectories backward, since the difference x(·)−u(·) increases by
1 at every spike and never changes sign otherwise, it must remain positive.
In particular, we will have x(s) > 1 when u(s) = 1, so that (x, t) has degree
zero.

B Geometric distribution of degrees in a simpli-
fied model

In this appendix, I briefly show for a simplified integrate-and-fire model with
synaptic conductances that the degrees of initial conditions (1, t) are geo-
metrically distributed. In particular the probability of finding a point (1, t)
with infinite degree is zero, which proves a weak version of the conjecture for
this model. I consider the same model as in the numerical example of section
3, except that ge(·) and gi(·) are (possibly rectified) white noise processes
with positive mean (preferably in Stratonovich sense). With this assump-
tion, spiking solutions are Markov processes. I also assume that Ei = EL =
reset value (shunting inhibition). I normalize the potential so that the reset
is zero and the threshold is one.

Consider a backward trajectory starting from (1, t0). If it hits 1 then
the degree is 0. If it hits 0 at time s then it must be negative for t < s,
so that its degree is at least 1 and the (possible) splitting point is at time
s. Applying the same process from (1, s), one can see that the probabilities
of the two outcomes are independent from the two outcomes for the first
trajectory. Therefore, the distribution of the degrees is geometric.
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