Generation of correlated spike trains

Romain Brette
Odyssee Lab (ENPC Certis/ENS Paris/INRIA Sophia)
Département d’ Informatique
Ecole Normale Supérieure
45, rue d’Ulm
75230 Paris Cedex 05
France

email: brette @di.ens.fr
tel: +33 144322176
fax: +33 144 32 21 56

February 11, 2008

Abstract

Neuronal spike trains display correlations at diverse time scales throughout the ner-
vous system. The functional significance of these correlations is largely unknown,
and computational investigations can help us understand their role. In order to
generate correlated spike trains with given statistics, several case-specific methods
have been described in the litterature. In this paper I present two general meth-
ods to generate sets of spike trains with given firing rates and pairwise correlation
functions, along with efficient simulation algorithms.

Keywords: spike trains, correlations, numerical methods, algorithms, Cox pro-
cesses

1 Introduction

Neuronal synchronization is ubiquitous in the central nervous system (Salinas &
Sejnowski, 2001), which raises numerous questions on its signifance, e.g. what is
the effect of correlations in the thalamus (Usrey et al., 2000) on cortical function?
or, at the cellular level, how sensitive are cortical cells to correlations in their in-
puts? (Salinas & Sejnowski, 2000; Konig et al., 1996; Rudolph & Destexhe, 2003;
Roy & Alloway, 2001). To address these questions in computational or theoretical
studies, several authors have devised case-specific methods of constructing corre-
lated spike trains. They can be classified in two categories.

The first approach consists in generating spike trains as inhomogenous Poisson
processes with a common time-varying rate. Then correlations between spike trains
arise from the autocorrelation of the rate. Examples in the litterature include sinu-
soidal rates (Salinas & Sejnowski, 2001) and jump processes (Song et al., 2000;
Song & Abbot, 2001). In all cases, the generated spike trains were limited to sets
of spike trains with identical rates and identical pair-wise correlation functions.

The second approach consists in generating correlated spike trains by picking
spikes randomly from a set of common spike trains. Essentially two cases have
been described in the litterature: each spike train is a random subset of a common
spike train (Feng & Brown, 2000) (Destexhe and Pare (1999) use a pool of spike
trains but the algorithm is equivalent), or each spike train is the union of a common
spike train and of an independent spike train (Gutig et al., 2003; Kuhn et al., 2003).
In both cases, the generated spike trains have the same rates and the same pair-wise
correlations, and the cross-correlation functions are most often delta functions.

In this paper I generalize both approaches to generate sets of correlated spike
trains with arbitrary rates and pair-wise cross-correlation functions. The first method
(section 3) defines spike trains as doubly stochastic processes, also known as Cox

processes (Daley & Vere-Jones, 2005). The second method (section 4) generates
spike trains from random mixtures of source spike trains — I shall call it the mix-
ture method. Before I present the methods in details, I will start with a few defini-
tions and general remarks (section 2).

The code for the simulations shown in this paper is available online at http:
//www.di.ens.fr/~brette/papers/Brette2008NC.html.

2 General considerations

2.1 Definitions

A spike train is defined as a sum of Delta functions:
=> 8(t—1")
k

where ¥ is the time of the k' spike. The firing rate is the time average of S(t),
i.e., the average number of spikes per time unit:

r=(S(t)) = lim /S

T—+o0 T

Experimental cross-correlograms quantify the temporal relationship between
spikes of two different trains. A cross-correlogram is an empirical estimate (his-
togram) of the cross-correlation function (CCF) which is defined for two spike
trains ¢ and j as

CCFij(s) = (Si(t)Sj(t + 5))

This quantity can be interpreted by observing that the probability density that
neuron j fires at time ¢ 4+ s conditioned to the fact that neuron ¢ fired at time
tis (Si(t)S;(t+s))/ (Si(t)). Itis often more useful to consider the the cross-
covariance function (CCVF), which is

CCVFij(s) = (Si(8)S;(t + 5)) — (Si(t)) (S;(1))

The subtracted term corresponds to the “baseline” in cross-correlograms. For ex-
ample, the CCVF of two independent realizations of homogeneous Poisson pro-
cesses is null, whereas the CCVF of two identical realizations (i.e., the autoco-
variance function) is 7d(s), where r is the rate (the result follows easily from the
probability interpretation). Thus, it makes sense to define the toral correlation be-
tween spike trains ¢ and j as

1
= (S,(t»/CCVFi’j(S)dS

3

where the value 1 signals perfect synchronization and 0 means no correlation.

In the following, I will consider that we want to generate IV spike trains with
rates 1, 7’2, ..., N, and cross-covariance functions CCVF, ;(-) (i # 7). For sim-
plicity, I will assume that all CCVFs have the same functional form: CCVF; ;(s) =
¢;i,j f(s), and I shall call ¢; j the correlation coefficient (the total correlation is then
Nij = (¢ij/r3) [f)- This hypothesis also implies that f is an even function. Note
that there is no unique solution to this problem, i.e., we may find two solutions with
the same second-order statistics but different higher-order statistics, and it can have
important consequences (see e.g. Kuhn et al., 2003).

The simplest example one can think of is a set of [V spike trains with permutation-
invariant second-order statistics, i.e., r; = r foralli € {1,...,n}, and ci,;j = cfor
all i # j. I shall call this example the homogeneous pool.

2.2 Population statistics

It is useful to understand how the pair-wise correlations relate to the average activ-
ity of the pool of spike trains, i.e.,

1
S(t) =5 3 Silt)
7
More generally, we can examine the properties of a weighted average of the spike
trains:
i

which may represent the total input to a neuron.
The temporal average of S(t) is simply

(S(t)) = Z w;r;.

The autocovariance function (ACVF) of S(%) is

C(s) = (S(t+s)S(t) —(S(1)*
= D wuw; (St +)S;(1)) = D wiw; (Si(0)) (Sj(t)
iJ iJ
= > wiw;CCVF,;(s) + Y w}ACVF;(s)
i#] i
For the mixture method (section 4), we will see that individual spike trains have

Poisson statistics, so that ACVF;(s) = r;0(s). For the method based on doubly

4

stochastic processes (section 3), the ACVF is the ACVF of the underlying time-
varying rate. For large IV, one can see that the first term dominates unless CCVFs
decrease to 0, so that the fluctuations of S(¢) reflect essentially the correlations of
spike trains (more precisely, the first term dominates if N x ¢; ; — +o00, e.g. it
still dominates if the CCVFs decrease to 0 as 1/1/N). For example, in the case of
the homogeneous pool, with w; = 1/N (pool average), we obtain (for large V)
C(s) ~ ¢ x f(s). When spike trains are not correlated, the ACVF of the average
activity reflects size effects (the second term in the formula).

3 Method I: doubly stochastic processes

Let us consider N independent inhomogeneous Poisson processes with instanta-
neous rates r;(t) (note that the Poisson processes are independent but may have cor-
related rates). The mean rates of the generated spike trains are simply r; = (r;(t)),
and the CCF of spike trains 7 and j is, for i # j:

CCFij(s) = (ri(t)r;(t + s))

In other words, the cross-correlation function of the spike trains is the cross-correlation
function of the underlying rates. It follows that correlated spike trains can be gen-
erated as Poisson processes with correlated rates. When the rates r;(¢) are them-
selves stochatic processes, the inhomogeneous Poisson processes are called doubly
stochastic processes or Cox processes (Daley & Vere-Jones, 2005). I will start with
the simple case of the homogeneous pool before I describe the more general case.

3.1 The homogeneous pool

Suppose we want to generate N spike trains with rates 7 and CCVFs ¢(s) =
aexp(—|s|/7.), where a is the strength of the correlations and 7. is the time con-
stant (the total correlation is A = 2a7./r). How to choose a doubly stochastic
process that can generate spike trains with these second-order statistics? Looking
at the average population activity, we observe that it reflects the rate x(¢) of that
process, and we expect to see some noisy function with exponential autocorrela-
tion. Thus, it is natural to define x(¢) as a realization of an Ornstein-Ulhenbeck
process:
Tedxr = (r — x)dt + odW

The average of x(t) is r and its autocovariance function is

s o?
ACVEF(s) = Var(z) exp(—u) = exp(

_ o sl
Te 27, Te

)

Therefore, if we generate x(¢) as a realization of an Ornstein-Ulhenbeck process
with Var(z) = a (i.e., 0 = \/27.a), then the spike trains generated by inhomo-
geneous Poisson processes with rate x(¢) will have the desired mean rates and
CCVFs. Note that all spike trains must share the same realization z(t) as instanta-
neous rate. This construction is illustrated in Fig. 1.

We note already that a problem arises from the fact that the Ornstein-Uhlenbeck
process is not always positive, and I will come back to this issue later (paragraph
3.3). Another observation we make here is that individually, spike trains do not
have Poisson statistics (contrary to the spike trains generated with the mixture
method, section 4); in particular, their autocovariance function is ¢(s) + 79(s)
(instead of rd(s)).

This method corresponds to the diffusion approximation for correlated inputs
used in Moreno et al. (2002). A variant with exponentially distributed jump pro-
cesses was used by Song et al. (2000). In the following, I generalize this approach
to heterogeneous correlation structures and rates.

3.2 The general case

We want to extend the previous method and generate N spike trains with rates r;
and pair-wise CCVFs ¢; ; f(s) (i # j). For the sake of simplicity, I will restrict to
exponential correlations: f(s) = exp(—|s|/7.), but one can apply the method to
other forms of correlations by replacing Ornstein-Uhlenbeck processes with Gaus-
sian processes with the required autocorrelation function.

In the framework of doubly stochastic processes, our problem reduces to gen-
erating [N Ornstein-Uhlenbeck processes with rates r; and covariances c; ; (i #
7). Because these processes are Gaussian and form a linear space, we can solve
this problem with the Cholesky decomposition (Press et al., 1993). Let R =
(r1,...,7rn) the vector of mean rates and C = (¢; ;) the matrix of correlations.
The algorithm is as follows:

1. Generate N independent Ornstein-Uhlenbeck processes y; with zero mean
and unit variance. Note Y = (y1,...,Yn)-

2. Compute L from the Cholesky decomposition of C = LL”.
3. Let X =R + LY.

Then the x;(t) are Ornstein-Uhlenbeck processes with mean r; and covariances ¢;
(i # j). It follows that the N spike trains generated from the rates x;(¢) will have
the desired rates and CCVFs. This construction is illustrated in Fig. 2.

A similar method was used recently by Galan et al. (2006) to generate corre-
lated input noise (not spikes).

Completion of the diagonal

One important point is missing in this algorithm: the diagonal coefficients ¢; ;
(which are the variances of the processes x;(t)) are unspecified. In fact any di-
agonal coefficients will be acceptable, provided that the completed matrix C is
positive semi-definite (otherwise the Cholesky decomposition does not exist). A
good criterion for the completion is to choose the smallest coefficients possible,
because it reduces the problem of positivity (see paragraph 3.3). I propose the
following procedure.

Define C* the matrix with coefficients cz = Cij and cjz = 0. Let D be the
diagonal matrix with entries d; ; = 1"22 ,and C, = C*+aD, fora € RT. Thereisa
smallest value a* such that C+ is positive semi-definite. For that minimum value,
all eigenvalues are non negative, but there is at least one null value (otherwise we
could choose a smaller «). Therefore C,+ is non-invertible, i.e., det(C,+) = 0,
which is equivalent to det(D~*C” + o*Iy) = 0. It follows that —a* is the
smallest real eigenvalue of D™1C™ (matrix with coefficients ¢; j0(i — 5)/r?), and

%2
wesetc;; =a'r;.

3.3 The positivity problem

As mentioned earlier, the main problem with using an Ornstein-Uhlenbeck process
for the stochastic rates is that it is not a positive process, whereas rates are, obvi-
ously, always positive. If the variance is not too large (compared to the mean), the
easiest way is to rectify the process, i.e., use 7 (t) instead of z(t) (z* = 0 when
z < 0). In doing so however, we modify the mean and variance of the process. If
we want to be precise, it is possible to adjust the mean and variance of z so that
27 has the desired statistics, using a nonlinear optimization procedure, as I show
in appendix A. However, generating strong correlations with a rectified Gaussian
process implies that the rates are zero most of the time, which does not seem very
desirable in most applications. Precisely, the rectified variable is null at least half
of the time when Var[z*] < (7 — 1)E[z*]?. In particular, for the homogeneous
pool example, the rates are positive at least half of the time if @ < r2, i.e., if the
total correlation is smaller than 277.. In other words, it is not reasonable to gener-
ate strongly correlated spike trains at fine time scales with Gaussian time-varying
rates.

Another option is to use a non-Gaussian process instead, but then we would
lose the linearity property that makes the Cholesky decomposition possible, and
the generalization to complex correlation structures would be much harder. I will
not consider this option here and instead I will present a very different method
based on random mixtures of spike trains in section 4.

3.4 Simulation of doubly stochastic processes

There are essentially two families of algorithms for the simulation of neural net-
works: clock-driven (or synchronous) algorithms, in which all state variables are
updated simultaneously at every tick of a clock, and event-driven (or asynchronous)
algorithms, in which state variables are updated only upon reception or emission
of a spike (Brette et al, 2007). I will describe an algorithm of each kind to generate
correlated spike trains with doubly stochastic processes. Both algorithms share the
following initial phase:

1. Construct the matrix of correlations C and complete the diagonal (see 3.2).

2. Find the Cholesky factor L (C = LL”).

Let us define Y (t) = (y;(t)) a vector of N independent Ornstein-Uhlenbeck pro-
cesses with unit variance and zero mean (to be constructed by the algorithm) and
X (t) the vector of instantaneous rates. We set Y (0) = 0.

3.4.1 Clock-driven simulation

In the clock-driven simulation, time is advanced by discrete time steps ¢t — ¢ + dt
(dt is small) and each time step involves the following operations:

1. Update the vector Y: Y (¢) — Y (¢ + dt). This operation is done simply by
noting that y; (t+dt), conditionally to y;(¢), is a normally distributed random
variable with expectation y;(t) exp(—dt/1.) and variance 1 —exp(—2dt/7.).

2. Calculate X(t +dt) = (R+ LY (t +dt))™ (rectified).
3. Forevery i € {1,...,n}, generate a spike with probability z;(t + dt)dt.

The algorithmic complexity is dominated by step 2, which takes O(N?) opera-
tions. Therefore the computational cost per unit time is O(N?/d¢t), which is high
compared to the simulation of independent spike trains (O(N/dt)).

3.4.2 Event-driven simulation

The event-driven approach is conceptually very different and much more complex.
We want to generate inhomogeneous Poisson processes with instantaneous rates
X € R¥, but I will start with a single process.

A single spike train:

For a start, suppose we want to generate a single inhomogeneous Poisson pro-
cess with rate (t). Assume that z(t) is bounded: z(t) < M. Then consider the
following algorithm (see Fig. 3):

1. Generate a realization of a homogeneous Poisson process with rate M.
2. Keep every point ¢ with probability =(t) /M.

This algorithm generates realizations of a Poisson process with rate z(t). Indeed,
one can see that the number of spikes in two distinct intervals is independent and
the intensity of the process at time ¢ is M * x(t)/M = xz(t). Note that in this
algorithm, x(t) needs only be calculated at times of the homogeneous Poisson
process (of step 1).

If 2:(¢) is not bounded the algorithm can be amended as follows, for a simula-
tion over some finite interval [0, T

1. Generate a realization of a homogeneous Poisson process with some rate M.

2. If z(t) > M for at least one point ¢ in that realization, then increase M (e.g.
M — 2M) and generate a new realization (back to 1).

3. Keep every point ¢ with probability z(t)/M.

This algorithm works fine if x(¢) is fixed and known in advance, but unfortunately
there is a problem in our case where x(¢) is a Markov process. Indeed, if the con-
dition of step 2 is satisfied, then we must generate a new Poisson process (step 1)
and the values x(t) at the corresponding times, but these values must be generated
conditionally to the values of z(-) at the times of the previous Poisson process (or
to the fact that the condition of step 2 was satisfied). This would make the al-
gorithm much more complicated. In our case, the best way is to choose a large
value of M and simulate the doubly stochastic process with upper-rectified rates
max(z(t), M), which is an excellent approximation if M is large. Indeed, one can
calculate that the probability that the condition of step 2 is satisfied is of order

4M2

MTe =o?

for large M, if 2(t) is a Gaussian process with variance o2. Taking M = 100, we
can see that the probability is extremely small.

To summarize, to simulate a doubly stochastic process for which the underlying
rate is an Ornstein-Uhlenbeck process z(t), mean y, standard deviation ¢ and time
constant 7, I propose the following algorithm:

1. Choose M = pu+ 100. Lett =0,z = pand ¢ = 0.

2. Update t: t — t + A, where A is exponentially distributed with mean 1/M.

3. Update x:
e p+ (x—p)exp(—A/1.) + o1 — e 2dt/Te N

where N is a normally distributed variable with variance 1 and mean 0.

4. Pick a number w in [0, M| uniformly at random. If u < z, then set time
t;«—tand i «— 7+ 1.

5. Repeat from step 2 until £ > T'.

When the algorithm ends, the variables ¢; contain the timings of the spikes. The
number of operations is proportional to M x T'.

Multiple spike trains:
We turn to the more general problem, i.e., generating /N spike trains with in-
stantaneous rates x1(t), ...,z n(t). First, we note that the union of all spike trains

is an inhomogeneous Poisson process with instantaneous rate s(t) = >, x;(t).
Then the idea is as follows: generate the union of all spike trains according to the
previous algorithm, then allocate each spike at time ¢ to one of the N spike trains
according to the weights x;(t)/s(t). In our problem, the sum s(t) = > . z;(t) is a
Gaussian process with variance

o2 = ZVar(xz-) + ZCov(xi, xj)
i i#]
= D ci
,L"j

(C is the completed correlation matrix). Let V be the (column-)vector of ones
(v; = 1 for all 7). Then

s = VIR+VILY
= s+ AY
where A = VTL (a row vector) and s* = >;mi. The cost of this operation

is O(N). To allocate a spike to one of the N spike trains, we would calculate
X = R + LY, pick a number at random v € [0, s, and find 7 such that

i—1 i
Zxk <v < Zwk
k=1 k=1

With this method, the cost of allocation is O(N?) because of the calculation of
X. This calculation can be avoided as follows. Define A; =) ;_, Ly, where

10

L;, is the k™ row of L (and Ay = 0), and b; = ch:l r,. Then pick a number at
random v € [0, s] and find ¢ such that b;,_; + A; 1Y < v < b; + A;Y by binary
search.The search involves O(log N) dot product operations, so that the total cost
is O(N log N).

Thus, the algorithm is the following:

1. Set M = 3, m +10(3, ; ¢ij)/% Lett = 0, yx = 0 and iz = 0 for all
ke{l,...,n}. Define A, = >} _,Lyand A = Ay.

2. Update t: t — t+ A, where A is exponentially distributed with mean 1/M.

3. Update y; foreachi € {1,...,n}:

yi — yiexp(—A/7.) + V1 — e~2dt/Te N

where NV is a normally distributed variable with variance 1 and mean 0.
4. Calculate s = s* + AY.
5. Pick a number u € [0, M] uniformly at random.

6. If u < s, then pick a number v € [0, s| at random (uniformly) and find k&
such that by, 1 + Ax_1Y < v < b + ArY by binary search. Then set time
tF —tand iy — ip + 1.

7. Repeat from step 2 until ¢ > T'.

The costly part in this algorithm is the binary search, which requires O (N log V)
operations. A binary search is executed for every spike in the union train, i.e., on
average 1), r; times. Therefore the algorithmic complexity is O((>_, ;)T x
Nlog N). For the clock-driven algorithm, we obtained O(T'N?/dt). If we note
r = (r;) (average rate), then for large N the condition for the event-driven method
to be more efficient than the clock-driven method is

1
logg N < —.
rlog, 7

Thus in practice, we can expect the event-driven method to be more efficient. In-
deed, if we take for example dt = 1 ms and r = 10 Hz, then the condition above
is satisfied up to N = 2100,

11

4 Method II: the mixture method

In this section I describe an alternative method to generate correlated spike trains,
which consists in selecting spikes from common spikes trains. I start with the case
of a homogeneous pool with instantaneous correlations, for which several authors
have described such algorithms. Then I generalize these algorithms to the case
of heterogeneous correlation structures, first with instantaneous correlations, then
with predefined correlation functions (e.g. exponential or Gaussian).

4.1 The homogeneous pool

We want to generate a homogenous pool of N spike trains with rate » and CCVFs
¢i,j(s) = crdo(s) for i # j (the autocorrelation function is ¢; ;(s) = rd(s); note
that ¢ < 1). Several authors have proposed the following procedure, sketched in
Fig. 4A (Kuhn et al., 2003; Feng & Brown, 2000). Consider a source spike train
defined as a realization of a Poisson process with rate r/c. Then generate N spike
trains as follows: for each target spike train i € {1, ..., N}, insert each spike from
the source spike train with probability c. This procedure generates N Poisson spike
trains with rates 7 and CCVFs ¢; j(s) = crd(s).

Other authors have proposed a similar method, but with N 4 1 source spike
trains (Gutig et al., 2003; Kuhn et al., 2003; Galan et al., 2006), as shown in Fig.
4B. Define N + 1 source spike trains as independent Poisson processes, the first N
with rate (1 — ¢)r, the last one with rate cr. Then define each target spike train i as
the union of the source spike trains ¢ and /N + 1. Again, this procedure generates
N Poisson spike trains with rates » and CCVFs ¢; j(s) = crd(s). Note however
that the higher-order statistics are not the same for the two methods.

Other variants have been proposed (Destexhe & Pare, 1999; Rudolph & Des-
texhe, 2003; Niebur, 2007), which are also particular cases of the general method I
present in the next section.

4.2 The general case

The examples for the homogeneous pool generalize to the following method, sketched

in Fig. 5, which I call the mixture method. Consider M source spike trains, defined

as independent Poisson processes with rates 1, ..., vys. Then generate IV target

spike trains by copying every spike from source £ to target ¢ with probability p; j.
The firing rate of target train ¢ is

M
Ty = Z PikVk
k=1

12

or in vector form: R = Pv. The CCVFs are

M

cij(s) = pikpisvid(s)

k=1

for i # j, or in vector form: C(s) = PDiag(v)P7§(s), except for the diagonal
(the ACVFs are r;0(s)).

Thus, if P and v are cleverly chosen (see sections 4.4 and 4.5), then one can
generate spike trains with various firing rates and correlation structures. I describe
specific examples in section 4.4 and a general method to determine P and v in
section 4.5. We note however that only positive correlations are possible.

The spike trains produced by the mixture method are individually Poisson pro-
cesses. In particular, contrary to Cox processes, their ACVFs are simply r;0(s) and
the interspike intervals are exponentially distributed.

A similar attempt to generalize the homogeneous mixture method (the sec-
ond method, with /N independent spike trains and one common train) to general
correlation structures was recently made in (Niebur, 2007) (although in a discrete
time framework). It corresponds to a specific case of the mixture method where
M = N+1,p; = 6(i—j)(1 —/q)and p; np1 = /g (@ € {1,...,N},
j € {1,...,N+1}), and thus is restricted to specific forms of correlation matrices
(specifically, of the form C = XTX where X is a column vector; the method was
also restricted to instantaneous correlations).

4.3 Non-instantaneous correlations

The mixture method described above produces only delta-shaped correlations. A
simple way to obtain non-instantaneous correlations is to add independent random
values to each spike time in the target spike trains. The rates and the Poisson
statistics are not modified by this procedure (drawing a Poisson process on the
line and moving the points independently still produces a Poisson process with the
same intensity). The CCVFs, however, are modified. For example, if normally
distribued random values with standard deviation o are added to the spike times,
then the delta function d(s) in the CCVFs is changed to a normal distribution with
standard deviation v/20.

More generally, if i.i.d numbers are added to all spike timings, then the statis-
tics of individual spike trains are unchanged (all-order statistics), while the delta
function in the cross-correlation functions is changed to the convolution

+oo
o(s) = / (@) f (@ + 5)da

—00

13

where f is the probability density of the random shifts. Thus, one can obtain
the desired correlation function by choosing the appropriate distribution function
f for the random shifts. In the next paragraph I give the important example of
exponential correlations.

Exponential correlations

We want to generate spike trains with exponential correlations with time constant
Te, 1.€.
§) =—e
9(s) = 5~

One easily checks that this can be achieved by choosing

flo) =~

Te

for x > 0 (otherwise f(x) = 0). Thus, to generate exponentially correlated spike
trains, it is enough to shift all spike times randomly with an exponential distribu-
tion.

4.4 A few examples of mixture processes

In the following, I describe a few non trivial examples of mixture processes.

4.4.1 Global synchronization

Here I generalize the mixture for the homogeneous pool to the case where the rates
r; are different (see Fig. 6A). Let us define the correlation coefficients as follows:

’I“Z‘?“j
(ri)

which is a generalization of the correlations in the homogeneous pool (¢; j = cr).
Let us choose M = N and the constant source rates

Cij =¢

for all k£, and

14

One can check that this choice indeed produces target spike trains with the required
rates and correlation coefficients. To ensure that p; j, € [0, 1] for all 4, £, the global
correlation coefficient ¢ must meet the following criterion:

c<@

T max 7’?

4.4.2 Topographic synchronization

We consider neurons arranged topographically in a line, and we want to generate
spike trains with the same rates and with pairwise correlations that decrease with
the distance between the two neurons.

Let us define a line of source spike trains with constant rate v and consider the
mixture matrix defined by p; ; = Aali=Jl where X is a synchronization strength
parameter and log a is the spatial constant of correlations (0 < a < 1,0 < A < 1).

The target rates are given by

Ti = Z DikV
k

Neglecting the boundary effects, i.e., assuming the sum runs from —oo to 400, we
obtain

—+o0
ri = VA Z ali =kl
k=—00
400
= ZVAZak
k=0
2UA
l1—a

for all ¢. If r the desired target rate, then v can be chosen according to the following
formula:
r(1—a)

2\

UV =

15

For j > i, the correlation coefficient ¢; ; is (again, far from the boundaries):

Cij = Zpi,kpj,kl/
k
_ V)\z(z gt Z Wi+ ZCLZk—i—j)
k<i i<k<j k>j
. . +w +w
= A" Z a4 (j—i)add T al Z a?®)
k=0 k=1
o 1+a?
. 2 i . .
= v\d Z(1_a2+]—2)
A1—a) 14+a%2 .,
= 5 (T T

and we obtain indeed a correlation coefficient that decreases with the interneuronal
distance. If cyax7 is the maximum correlation, then the parameter can be chosen
according to the following formula:

Fig. 6B shows sample spike trains generated with this topographic mixture.

4.4.3 Weak synchronization

For more general correlation structures, it is more difficult to define an appropriate
mixture (see section 4.5). Here I describe a simple generic construction when
correlations are small (i.e., of order 1/N). The desired rates are r; and the desired
correlation coefficients are c; ;.

Index kon A C {1,..., N}?, where (i,j) € Aifi < j. Set Pi(i,m) = 1 and
Pi,(,m) = 01f I # i and m # i. Set also p; (; ;) = 1. Then define

Yig) = Cig
Vg = Ti_g Cij

>

provided these are positive numbers. Then we obtain the desired rates r; and the
correlation coefficients ¢; ;. But one can see that the positiveness requirement
means » j>i Di,j < T, thus the correlations must be of order 1 /N for this scheme
to be applicable.

16

4.5 Finding the mixture in the general case

In general, we are given the rates r; and the correlations c; j, and we want to con-
struct a mixture defined by the matrix P and the rates vy, with the constraints
pik € [0,1] and v, > 0. This problem is far from trivial in general. First we note
that for all 4, ¢; ; < r;, and equality is satisfied for {0, 1} matrices P. Formally, the
inverse problem is to find P and v (vector) such that

1. R = Pv (R is the vector of rates),

2. C = QQT, where Q = P+/Diag(v), except for the diagonal entries
(Diag(v) is the diagonal matrix with diagonal entries /), which are un-
specified,

3. v is a positive vector,
4. P has entries in [0, 1].

In step 2, writing C = QQT with a positive matrix Q means that C is a completely
positive matrix (which is not the same as a positive definite matrix). Unfortunately,
there is no practical algorithm for decomposing a completely positive matrix (in
the general case) or even deciding whether a matrix is completely positive (Berman
& Shaked-Monderer, 2003), and the fact that the diagonal entries are unspecified
makes the problem even harder.

The equality in step 1 can be relaxed to the inequality R > Pv. Indeed, if
this inequality holds, then we can obtain the equality by completing the matrix
P to (P|In) (block form) and by completing the vector v with the N elements
UNtk—1 = Ti — Y PikVk (k from 1 to N).

In appendix B, I describe two ways of solving this problem. The first one
consists in looking for a particular solution with fixed column sums for P. The
algorithm is fast but not general because such a solution does not always exist.
The second way consists in expressing the constraints as a nonlinear optimization
problem and finding the solution with an optimization algorithm (e.g. gradient
descent). The output of these algorithms are shown in Fig. 7.

4.6 Simulation of mixture processes

4.6.1 Offline simulation

The simple (naive) algorithm is as follows: first generate the M independent Pois-
son spike trains (using the fact that ISIs are exponentially distributed), then for each
spike, copy it to target spike train ¢ with probability p; j, then shift it according to

17

the delay distribution f(z). The number of operations is M Nvt, where t is the
duration of the simulation and v is the average rate of the source spike trains.

This method can be efficient if P is a low rank matrix, e.g. in the case of the
homogeneous pool (then the simulation cost is O(Nwt)). However, in general, M
has the same magnitude as NV, so that the simple algorithm requires O(N2vt) op-
erations. I propose an algorithm which requires O (N log Nrt) operations, where
r is the average rate of the target spike trains.

We want to generate the spike trains in a temporal window [0,%]. Let n;
be the number of spikes in target train ¢ that come from the source train k. This
number follows a binomial distribution with probability p; ;, and number of trials
n = number of spikes in spike train k, which suggests the following algorithm:

1. Generate M independent Poisson spike trains over [0, ¢].

2. For each target train ¢ and each source train k, draw the number of spikes
coming from & (n; ;) from a binomial distribution with probability p; ;. and
number of trials n = number of spikes in spike train k, then pick n; j spikes
from source train k.

3. Shifts all spikes according to the delay distribution f(x).
4. Sort the spikes.

Generating the source spike trains (1) takes O(Mwt) operations (v is the av-
erage source rate). Calculating the numbers n; j, (2) takes O(M N) operations,
and picking the spikes takes O(NNrt) operations (i.e., the total number of spikes in
the target trains; r is the average target rate). Shifting the spikes (3) also requires
O(Nrt) operations. Finally, sorting the spikes (4) requires O(Nrtlog(Nrt)) op-
erations, which dominates the total cost. This cost can be reduced by splitting
the full interval [0, ¢] into successive windows of size T'. If T is small, then sorting
will be faster, but there will be more calculations of binomially distributed numbers
(M Nt/T). Thus we can see that the T-dependent part is of order Nrtlog(NrT)+
MNt/T. Writing f(z) = —rlog(z) + aMx (a is an implementation-dependent
constant), we can see that we are looking for 7" such that f'(1/7") = 0, and we find
x* =r/(aM), thus T' o M /r. Inserting back this value, we find that the total cost
for this optimal value is of order Nrtlog(MN) + Muvt, and if M is of order N,
then we get O(Nrtlog(N)).

4.6.2 Online simulation

It is possible, although more complicated, to simulate this procedure in an event-
driven way, as described below.

18

1. Find the next spike in the pool of M target spike trains. There are two
ways to do it: either simulate M independent Poisson queues with rate vy
and extract the next event by using a global priority queue (the cost of inser-
tion/extraction is O(log M))), or simulate a Poisson process with rate) , vy,
(the union of all spike trains), and pick the origin of the next spike accord-
ing to probabilities v;/) v, (the cost is O(1) with a precalculated table,
O(log M) otherwise).

2. Calculate the number of copies of this spike in the target spike trains. This
number is a random Poisson variable with mean), p; ;. Since this sum
can be calculated only once at the beginning, this operation requires O(1)
operations.

3. Distribute each copy to the target spike trains with probabilities proportional
to p; . (with no duplication). This operation can be done with precalculated
tables.

If precalculated tables are used (to generate the random numbers), then the
cost of this algorithm is no more than the total number of spikes in the original
and target pools, i.e., O(>_ vt + > rit). With random shifts (to generate non-
instantaneous correlations), events need to be inserted in a priority queue. The size
of the queue is proportional to IV, so if M is of order NV the simulation cost is also
O(Nrtlog(N)) with a standard priority queue.

5 Discussion

Summary

I presented two methods to generate correlated spike trains with given rates and
pairwise correlation functions. Compared to previous propositions, both methods
are general and not restricted to instantaneous correlations, and I also provided ef-
ficient simulation algorithms. Except in specific cases (e.g., permutation-invariant
statistics or instantaneous correlations), the most efficient algorithm I proposed is
slower than simulating uncorrelated spike trains (Nrlog(N) vs. N7 per second,
where r is the average firing rate in the population), but only by a factor log(V).
The two methods are conceptually quite different, and it is important to ob-
serve that the second-order constraints do not fully constrain the statistics of the
spike trains, so that different solutions to the problem of generating correlating
spike trains with given rates and pairwise correlations are not equivalent. The
first method consists in generating spike trains with underlying time-varying rates
which are correlated. This is reflected in the fact the autocorrelation of a single

19

spike train is the autocorrelation of the underlying rate, in particular it has the same
time constant. Therefore this method would not seem very appropriate to model
tight synchronization arising from shared presynaptic neurons; besides, the posi-
tivity of rates implies that one cannot generate strongly correlated spike trains with
short correlation time constants. On the other hand, the mixture method can be
seen as an abstract representation of the generation of synchronized spike trains
arising from shared presynaptic neurons (see Fig. 5), and in this way, it seems
more appropriate for short correlation time constants. The mixture method gener-
ates spike trains with Poisson statistics (in particular, flat autocorrelation) and its
simulation is relatively efficient. However, finding the correct mixture in the gen-
eral case requires a nonlinear optimization procedure which may not converge to
a unique solution, and it can be a problem given that different solutions can have
different higher-order statistics. Table 1 summarizes the differences between the
two methods.

Method I (Cox processes) | Method II (mixture method)
Statistics of spike trains Not Poisson Poisson
Negative correlations Yes No
Fast and strong correlations Not appropriate Appropriate
Programming Simple Complicated
Simulation cost (/s) O(rN?log N) O(rNlogN)
Population rate Underlying rate Solution-dependent
Specific issues Positivity of rates Non-unique solutions

Table 1: Comparison of methods I and II.

Example: response of an integrate-and-fire model to correlated inputs

In order to illustrate the possible applications of the algorithms, I describe a brief
example about the sensitivity of neurons to correlations. Moreno et al (2002) have
calculated the output rate of an integrate-and-fire model driven by correlated inputs,
using a diffusion approximation of the input current. The methods I presented
here provide a numerical way of assessing the quality of these expressions. In
Fig. 8, I simulated correlated inputs with both methods I (Cox processes) and
II (mixture method) and observed the firing rate of an integrate-and-fire model
with these inputs. Although the simulation results match the analytical prediction
qualitatively, there are some significant quantitative differences due to size effects,
particularly for short correlation time constants. The figure also illustrates the fact
that two different mixture processes with identical second order properties are not

20

equivalent. Mixture process A uses a single source spike train with rate /c while
mixture process B uses N independent source trains and one common train with
rate cr. In the latter case, correlations have a minor effect on the postsynaptic rate
(not significantly different from the uncorrelated case); this is not surprising since
the increase in firing rate cannot be higher than the firing rate of the common spike
train, i.e., cr (as noted also in Kuhn et al. (2003)).

Perspectives

Both methods can be extended in several ways. First, the problem of generating
strong correlations on short time scales with doubly stochastic processes may be
addressed by using non-Gaussian processes for the underlying rates. This is pos-
sible in principle, but it would probably make the algorithms more complicated,
because the use of the Cholesky decomposition relies on the fact that the addition
of two independent Gaussian variables is also Gaussian. Oscillatory correlations
can be included with minor modifications by introducing oscillatory rates in the
doubly stochastic method, and by changing the delay function f(s) in the mixture
method (or alternatively, by using inhomogeneous Poisson processes with oscilla-
tory rates instead of homogeneous Poisson processes as source spike trains).
Beyond the simulation of correlated spike trains, the methods I described also
provide a theoretical model of correlations that could be used to investigate their
role by analytical means. In particular, the mixture method provides an idealized
model of the correlations induced by shared presynaptic neurons, which could be
useful in studying neural computation in early sensory pathways (Bair, 1999).

Acknowledgments

I thank Alain Destexhe and Rubén Moreno-Bote for fruitful discussions. This work
was partially supported by the EC IP project FP6-015879, FACETS, and the EADS
Corporate Research Foundation.

A Rectification of Gaussian processes

Using Gaussian processes (e.g., Ornstein-Uhlenbeck processes) as rates for the
spike trains (Method I, section 3) poses a problem of positivity, since rates must be
positive. If the variance is not too large (compared to the mean), the easiest method
is to rectify the rates, i.e., use " (¢) instead of z(¢) (z* = 0 when z < 0), but in
doing so, we modify the mean and variance. If X is a Gaussian random variable

21

with mean F[X] = p and variance Var[X] = o2, then the mean and variance of
the rectified variable X T are as follows:

E[Xt] = \/%exp(2“2)+ + Erf(\fa)
VarX*] = (u— B[X*)E[X*]+ %<1+Erf< =57

where

Erf(z / et dt
f

Thus, by inverting these relationships, we can obtain a rectified Gaussian vari-
able with the desired variance and mean. First observe that

E[XT] ek
Var[X *] _f(U)

where f is a positive function. Then, given Var[X "] and F[X], find p1/0 using
a root finding algorithm. Finally, find o using the formula for E[X] above, and
deduce L.

One can see that the rectified variable is null at least half of the time when
Var[X+] < (7 — 1)E[X]2 (let i = 0 in the equations above). Thus, the method
can generate strong correlations only with rates that are zero most of time.

The correction procedure described above addresses the rectification of a single
Gaussian variable, it can be used for example to generate a homogeneous pool of
correlated spike trains (identical rates and pairwise correlations). In principle, the
same kind of correction can be applied in the multidimensional case by calculating
E[X Y] for a bidimensional Gaussian variable (X,Y") and using a multidimen-
sional optimization procedure. However the expression of E[X ™Y ™| involves in-
tegrals and the optimization procedure can be computionnally heavy. In this case,
if the distorsions due to the rectification are too important, it might be better to use
a different method (e.g. the mixture method).

B Solving the inverse problem for the mixture method
As shown in section 4.5, to generate spike trains with the desired rates r; and
correlation coefficients c; j, we must find a matrix P and a vector v such that

1. R > Pv (R is the vector of rates),

2. C = QQT, where Q = P/Diag(v), except for the diagonal entries
(Diag(v) is the diagonal matrix with diagonal entries v), which are un-
specified,

22

3. v is a positive vector,
4. P has entries in [0, 1].

I describe two methods to solve this problem. The first one is fast but not
general, and consists in finding a particular solution; the second one is a general
optimization method.

Matrices with fixed column sums

We look for a particular solution of the problem such that the matrix P has fixed
column sums, i.e., Y . p; ; = c for all k, which means that each spike from spike
train k is duplicated the same average number of times. This assumption will help
us specify the diagonal entries of QQ7, since only the coefficients Cij,t # j are
specified. We shall call a matrix obtained by specifying the diagonal entries of C
a completion of the matrix C.

Suppose that P defines a solution with fixed column sums. Then the comple-
tion D = QQ7 is such that Zj dij = crj,sothatd;; = cry — Z#i Cij-

Choosing different values for c defines different completions of C. Since ¢; ;
must be positive, we must choose:

Zj;éi Ci,j

i

c>

and besides C must be positive definite. If we note Cj the completion with ¢; ; =
-> ;i Ciyj» then we want to find ¢ such that Co+c Diag(R) has a purely positive
spectrum. The set of positive definite matrices is convex, so that there is a minimum
¢p such that Cy + ¢ Diag(R) is positive definite for any ¢ > c¢y. The spectrum of
Co+co Diag(R) must contain 0, i.e., det(Co+co Diag(R)) = 0 or, equivalently,
det(Diag(R)~'Cq + coly) = 0. Thus, —cy is an eigenvalue of Diag(R)~'Cy.
By convexity of the set of positive definite matrices, it is necessarily the smallest
real eigenvalue (i.e., largest negative eigenvalue). This way, we obtain a semi-
definite positive matrix with positive entries (this last assertion follows from the
fact that the diagonal entries of a positive definite matrix are positive, since they
are a sum of squares). This is a necessary condition for the matrix to be completely
positive, but unfortunately, not a sufficient one for N > 4; also, it does not give a
construction of the decomposition.

One ¢y has been found, one can apply a decomposition method to the corre-
sponding completion (which is real positive semidefinite matrix) in order to obtain
Q, such as the square root or the Cholesky decomposition. The Cholesky decom-
position is unique if we impose that diagonal entries are non-negative. The square

23

root is unique if we impose it to be positive semidefinite. Once Q has been found,
we can choose the rates v, so that all entries of P are smaller than 1. Indeed, since
i,k = Pi,k\/Vk> choosing v}, = max; qZk ensures that p; , < 1 forall 7, k.

Unfortunately, this method does not ensure that the matrix P has only positive
entries, so that a more general method is required in the general case.

Nonlinear optimization

An alternative approach consists in expressing the solutions of the problem as min-
ima of an energy. For example, finding a correct mixture given the rates r; and the
correlation coefficients ¢; ; amounts to finding the matrix P and the vector v which

minimize
E=Y " _pispjsvi — cij)?
i#j k
with the constraints p; ; € [0,1], v > 0and), p; xv, < 7; (for all 4, 7). These
latter constraints are unfortunately not convex, but they can be transformed into an
energy with

Fi= (> pisv —ri)"
k

(or some smooth version, e.g. replacing the -* operation by the hyperbola f(x) =
(z/2) + /1 + 22/4, or multiplying by a sigmoidal function (in [0, 1]), or even
replacing with a square). Then a solution can be found with standard nonlinear
minimization procedures, e.g. gradient descent, restricted on the hypercube for P
and the positive cone for v (simple clipping works). Calculation of the gradients
gives the following expressions:

VpE = 4AP Diag(v)

V.,E = 2Diag(PTAP)
VpF = HPvT -R)v
V,F = HP/T-R)TP

where v is a row vector and H is the Heavyside function (applied on all components
of a vector), and A is a matrix with entries A;; = ¢;j — >, pijpjiVk for i # j and
A;; = 0. Empirically, gradient descent was able to find admissible solutions on all
examples (i.e., with ¥ ~ 0 and ' = 0). A simple initialization is P = Iy and
v = R/. (Note that P and v must be completed to obtain the equality R = Pv, as
explained in section 4.5).

24

References

Bair, W. 1999. Spike timing in the mammalian visual system. Curr. Opin. Neuro-
biol., 9(4), 447-453.

Berman, A., & Shaked-Monderer, N. 2003. Completely Positive Matrices. World
Scientific Publishing Company.

Daley, D.J., & Vere-Jones, D. 2005. An Introduction to the Theory of Point Pro-
cesses. Volume I: Elementary Theory and Methods. 2nd edn. Springer.

Destexhe, A., & Pare, D. 1999. Impact of network activity on the integrative prop-
erties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81(4), 1531-
1547.

Feng, J., & Brown, D. 2000. Impact of correlated inputs on the output of the
integrate-and-fire model. Neural. Comput., 12(3), 671-692.

Galan, R. F., Fourcaud-Trocme, N., Ermentrout, G. B., & Urban, N. N. 2006.
Correlation-Induced Synchronization of Oscillations in Olfactory Bulb Neurons.
J. Neurosci., 26(14), 3646-3655.

Gutig, R., Aharonov, R., Rotter, S., & Sompolinsky, H. 2003. Learning Input
Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity. J.
Neurosci., 23(9), 3697-3714.

Konig, P, Engel, A. K., & Singer, W. 1996. Integrator or coincidence detector?
The role of the cortical neuron revisited. Trends Neurosci., 19(4), 130-137.

Kuhn, A., Aertsen, A., & Rotter, S. 2003. Higher-Order Statistics of Input Ensem-
bles and the Response of Simple Model Neurons. Neural Comp., 15(1), 67-101.

Moreno, R., de la Rocha, J., Renart, A., & Parga, N. 2002. Response of spiking
neurons to correlated inputs. Phys. Rev. Lett., 89(28 Pt 1), 288101.

Niebur, E. 2007. Generation of synthetic spike trains with defined pairwise corre-
lations. Neural Comput., 19(7), 1720-1738.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. 1993. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press.

Roy, S. A., & Alloway, K. D. 2001. Coincidence detection or temporal integration?
What the neurons in somatosensory cortex are doing. J. Neurosci., 21(7), 2462—
2473.

25

Rudolph, M., & Destexhe, A. 2003. Tuning neocortical pyramidal neurons between
integrators and coincidence detectors. J. Comput. Neurosci., 14(3), 239-251.

Salinas, E., & Sejnowski, T. 2000. Impact of correlated synaptic input on output
firing rate and variability in simple neuronal models. J. Neurosci., 20, 6193—
6209.

Salinas, E., & Sejnowski, T. J. 2001. Correlated neuronal activity and the flow of
neural information. Nat. Rev. Neurosci., 2(8), 539-550.

Song, S., & Abbot, L. 2001. Cortical development and remapping through spike
timing-dependent plasticity. Neuron, 32, 339-350.

Song, S., Miller, K. D., & Abbott, L. F. 2000. Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nature Neurosci., 3(9),
919-926.

Usrey, W., Alonso, J., & Reid, R. 2000. Synaptic interactions between thalamic
inputs to simple cells in cat visual cortex. J. Neurosci., 20(14), 5461-5467.

Figure legends

Figure 1

Generation of a homogeneous pool of correlated spike trains with doubly stochastic
processes. The average rate is 20 Hz, the correlation time constant is 7. = 10
ms and the total correlation strength is A = .3. A. Underlying time-varying rate
(Ornstein-Uhlenbeck process — N.B.: the value of the rate is calculated only at
spike times). B. Ten sample spike trains. C. Population histogram of spike times
for 200 spike trains. D. Cross-correlogram with 2 ms time bins for a pair of spike
trains (calculated over 1 hour), and theoretical prediction (dashed line).

Figure 2

Generation of 5 correlated spike trains with doubly stochastic processes. Rates
ranged between 20 and 25 Hz, and pair-wise correlations were chosen randomly
(correlation time constant 7. = 10 ms). A. Five independent Ornstein-Uhlenbeck
processes with unit variance are generated. The correlation matrix C is decom-
posed as C = LL” (Cholesky decomposition). B. The rates for the 5 spike
trains are calculated by mixing the independent spike trains with the matrix L
(X(t) = R+ LY(t)). C. Five correlated spike trains are generated according to

26

these rates. D. The empirical cross-correlograms match the theoretical predictions
(solid line).

Figure 3

Event-driven algorithm for generating a spike train with time-varying rate z(t).
Generate a realization of a Poisson spike train with rate M, and pick a number y(t)
at random in [0, M| for each spike occurring at time ¢. Select only those spikes
such that y(¢) < =z(t). Equivalently, generate a realization of a uniform spatial
Poisson process on [0, 7] x [0, M] with intensity 1 (crosses) and select the points
below the graph of x(-) (circled crosses).

Figure 4

The mixture method for homogeneous pools with correlation strength ¢ and rate r.
A. First method: spikes are randomly selected from a common source spike train.
B. Second method: target spike trains consist of the union of an independent and a
common spike train.

Figure 5

The general mixture method. M independent Poisson spike trains with rates vy
are generated. Target spike trains are obtained by selecting spikes from the source
spike trains at random, according to the probability matrix P.

Figure 6

Generation of 7 spike trains with different rates and homogeneous synchronization
with mixture processes. A. Rates of the spike trains. B. Generated spike trains over
500 ms with the given rates (A), correlation strength ¢ = 0.2 and correlation time
constant 7. = 5 ms. C. Empirical cross-correlogram for the first two spike trains
and theoretical prediction (solid line). D. Empirical cross-correlogram for the next
two spike trains and theoretical prediction (solid line).

Figure 7

Generation of spike trains with arbitrary pairwise correlations and rates (mixture
process). A. Rates of 5 target spike trains. B. Correlation matrix for the target spike
trains. The diagonal entries are unspecified (zero on the graph). C, D. The source
rates (C) and the mixture matrix (D) are computed with a nonlinear optimization

27

algorithm (here, gradient descent). Ten source trains were used. E. Resulting cor-
related spike trains over 500 ms. F. The empirical cross-correlogram matches the
theoretical prediction (correlation time constant 7. = 5 ms).

Figure 8

Response of an integrate-and-fire model to correlated inputs generated by the mix-
ture method and comparison with analytical results obtained with a diffusion ap-
proximation (Moreno et al., 2002). A. A leaky integrate-and-fire neuron is driven
by 1000 correlated input spike trains (80% excitatory, 20% inhibitory) at 10 Hz
with instaneous synapses, the total input is balanced (zero mean). B. Output firing
rate as a function of a short correlation time constant 7, for correlation strength
¢ = 0.001 and different construction methods: doubly stochastic processes (+),
doubly stochastic processes with firing rates 20 times higher and scaled synap-
tic weights (x), mixture process A (filled circles), mixture process B (empty cir-
cles) and theoretical prediction (solid line). C. Output firing rate as a function of
a long correlation time constant 7. for correlation strength ¢ = 0.02 and differ-
ent construction methods (as in B; qualitatively similar effects were obtained with
¢ = 0.001).

28

~ 50
L
()
©
“ 0
1 1 1 1
111 n 1
1 ! | II
. 1 n . 1 1 .
. . 11
II II 1 ! 1
50
~N
L
()
5 0
0 50 100 150 200
Time (ms)
‘Tm
e
()
(O]
C
()
i)
O
£
o
O

-20 -10 0 10 20
Time lag (ms)

Figure 1:

29

(sw) bejawiy (sw) bej awi

sw oS 0C 0L O OF oml— 0C 0L 00L-0C— <0

suresy ayids
_ _ 5 o
| ___ | “ . m
|0l I | &
| [| a
2
2 Sl 2
Slq
sw 0§
SOYe e M=>

20 Hz
><N
>

Figure 2:

30

Figure 3:

31

rate r/c

rate (1-c)r

Figure 4:

32

rate cr

Source

Target

Source

Target

Source

Target
Figure 5:
A B
20 [
N I| |IIH"IIIIII
N
%10 > AL
S (N
< N
0 L L1
2 4 6 0 500
Spike train Time (ms)
C D
1500 4 1000
@ 1000
)
g 500
S 500
C
ks
O 0 0
-10 0 10 =10 0 10
Time lag (ms) Time lag (ms)
Figure 6:

33

uonea1i0)

Nonlinear o

optimization
_

Target spike train

S
Avjigeqold

10

Source spike train

S
<
(15) s
ﬁ

o o

SU3PIDUIOD

500

o

Time lag (ms)

)

Time (ms

Figure 7:

34

||||| || hlli |||II| |||||___><> T

22y

Rate (Hz)

| oo > 005200502200 P00 50O,
0 1 2 3 4 5
Correlation time constant (ms)

N
<
]
e
o X % x x xx,
L + X XXX xxxx xxx Xx XX XXXX)(M
00
o '3% E@W@M
0 100 200 300 400 500

Correlation time constant (ms)

Figure 8:

35

