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Abstract

Modern graphics cards contain hundreds of cores that can be programmed for intensive
calculations. They are beginning to be used for spiking neural network simulations. The goal
is to make parallel simulation of spiking neural networks available to a large audience, without
the requirements of a cluster. We review the ongoing efforts towards this goal, and we outline
the main difficulties.
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1 Introduction

Graphics processing units (GPUs) are chips available on modern graphics cards. They are inex-
pensive units designed originally and primarily for computer games, which are increasingly being
used for non-graphical parallel computing (Owens et al., 2007). The chips contain multiple pro-
cessor cores (3072 in the current state of the art designs1), which can be programmed with the
SIMD paradigm: single instruction, multiple data. Recently, a number of developers have investi-
gated the possibility of simulating spiking neural networks on GPUs (Bernhard and Keriven, 2006;
Nageswaran et al., 2009a,b; Fidjeland et al., 2009; Fidjeland and Shanahan, 2010; Nowotny, 2011b;
Fernandez et al., 2008; Hoffmann et al., 2010; Bhuiyan et al., 2010; Han and Taha, 2010b; Scorcioni,
2010; Han and Taha, 2010a; Yudanov et al., 2010; Mutch et al., 2010; Ahmadi and Soleimani, 2011;
Wang et al., 2011; Igarashi et al., 2011). The hope is that users will then be able to simulate neural
networks in parallel, with an efficiency that previously required a cluster.

Some of the authors mentioned above have made their code available as is, or as part of a software
package. Notably, the NeMo library by Andreas Fidjeland (Fidjeland et al., 2009) and GeNN by
Thomas Nowotny (Nowotny, 2011b) are fully featured C++ libraries for spiking neural network
simulation on GPU. NeMo features a fixed set of neuron models to choose from, synaptic delays,
an offline, nearest neighbour based STDP learning rule, and a sparse matrix structure allowing for
large numbers of synapses. GeNN features code generation for arbitrary neuron models, but no
synaptic delays or STDP, and uses a dense matrix structure which puts a memory limit on the
maximum model size. The source code for Nageswaran et al. (2009b); Richert et al. (2011) is also
available and can be adapted by users. This code features synaptic delays and a standard STDP
rule, and makes use of a sparse matrix structure, however it is currently restricted to Izhikevich
neurons. Finally, although it does not yet support general simulations on GPU, the Brian simulator
(Goodman and Brette, 2008, 2009) supports parallelisation on single or multiple GPU systems in
its model fitting toolbox (Rossant et al., 2010, 2011).

Grid Block

Thread Thread Thread

Threaded execution on GPU

Figure 1: The GPU divides work into a single grid of multiple blocks, each block consisting of
multiple threads. Memory consists of two main types, global memory which is large, slow and
shared between all blocks, and shared memory which is small, fast and only shared between threads
in a block. See section 2.1 for more details.

Programming for a GPU is rather specialised (figure 1, see section 2.1 for more details). Each pro-
cessor core on a GPU is much simpler than a typical CPU, and this places considerable limitations
on what programs can be written for them. Moreover, although recent versions of these chips allow
more of the functionality of a full CPU (such as conditional branching), algorithms that do not
take into account the architecture of the GPU will not use it efficiently. In particular, the GPU

1The GeForce GTX 690 consisting of dual Kepler GK110 GPUs. http://www.geforce.com/whats-new/articles/

article-keynote/
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places constraints on memory access patterns. Although 512 cores may be present in the GPU2, it
is unrealistic in most cases to expect a 512x speed increase over a CPU due to communication over-
heads (present in all parallel computing scenarios), and in particular on the constraints on memory
access patterns (particular to GPU computing). In this note, we outline a number of general issues
for neural network simulation on GPUs.

We start by reviewing general algorithmic issues in section 2. In general, the bottleneck for large
scale simulations is the propagation of spikes across the network (section 2.3). To turn user-defined
models into compilable GPU code, a number of developers are starting to use code generation,
which we describe in section 3. In section 4, we review a related issue: tuning GPU algorithms to
specific hardware and models.

2 Algorithms

A spiking neuron model is generally described as a hybrid system, that is, a set of differential equa-
tions that describe the continuous evolution of a number of state variables (membrane potential,
conductances, . . . ), and discrete events: spikes. When a condition on the state variables is satisfied,
for example when the membrane potential exceeds some threshold value, a spike is produced. When
a spike is received, it produces a change in one or several variables, for example a synaptic conduc-
tance. The propagation of spikes from a presynaptic neuron to a postsynaptic neuron may occur
with a conduction delay. Therefore, the simulation of spiking neural networks can be decomposed
into three main parts:

1. Integrating the differential equations that describe the neuron models.

2. Propagating the spikes to target neurons.

3. Applying the effect of spikes on target neurons.

Algorithms for CPUs are reviewed in (Brette et al., 2007). Spiking neuron models can also be
described in their integrated form, i.e., the membrane potential is a sum of kernels corresponding
to each received spike, as in the Spike Response Model (Gerstner and Kistler, 2002). Note that
these are not different types of model, only a different description. Here we focus on the differential
description mentioned above, but specific simulation algorithms have also been developed for models
described in the integrated form, including on GPU (Bohte and Slazynski, 2012). There are also
cases in which neurons communicate with continuous signals (e.g. gap junctions), which we address
in the discussion.

The number of operations for step 1 scales with the number of neurons. On GPUs, parallelizing
the numerical integration (step 1) is straightforward, because it follows the SIMD paradigm (Single
Instruction, Multiple Data). That is, the same operations are applied for all neurons that share
the same model equations. This is the ideal case scenario for GPUs. We start by describing GPU
algorithms for this step in section 2.2. The number of operations for steps 2 and 3 scales with the
number of synapses. Therefore, for large networks, these two steps dominate the total computational
cost (Brette et al., 2007). In addition, parallelizing spike propagation is more difficult, because it
does not follow the SIMD paradigm. Therefore, the main bottleneck for GPU simulation is the
propagation of spikes across the network, which we address in section 2.3. Before we address these
specific algorithmic issues, we first describe the architecture of GPUs.

2.1 Architecture of GPUs

We only consider the architecture of NVIDIA GPUs in this paper, however other architectures
(such as those of AMD) are very similar. The GPU divides work into a single grid of multiple
blocks, each block consisting of multiple threads (figure 1). Memory consists of two main types that
are relevant here, global memory which is large, slow and shared between all blocks, and shared
memory which is small, fast and only shared between threads in a block. On the hardware level, the
GPU is divided into multiple streaming multiprocessors (SMs). Each SM contains a fixed amount

2For example, the GeForce GTX 580. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-580
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of shared memory, and several blocks can be simultaneously assigned to each SM if they do not use
all of the available shared memory.

The most basic unit of parallelism is the warp, which is a group of 32 threads. Arithmetical
instructions are always executed in a warp, and memory accesses are issued in half-warps (the first
and last 16 threads of a warp). Threads diverge in their execution if different paths are taken at
conditionals. Each warp executes the same instructions, and in the case of conditionals each branch
is executed serially on a subset of the threads in that warp, and therefore it is important to minimise
this divergence for high efficiency.

Global memory is accessed in 32, 64 or 128 byte chunks from half warps. If a single 4 bytes of
memory is requested by the threads in a half warp, a 32 byte request would be issued (thereby
using only 1/8th of the available bandwidth). However, if each thread in a half warp accesses 4
bytes, and these accesses are contiguous in memory, a single 64 byte memory request would be
issued (using all the available bandwidth). The latter type of memory access is coalesced, and a key
strategy for GPU programming is to layout data and design algorithms that ensure that as many
memory transactions as possible are coalesced.

The hardware is optimised for 32-bit data, and single precision arithmetic is usually considerably
faster than 64-bit arithmetic (8-24 times faster depending on the model, although this may be
irrelevant if the bottleneck is memory access time). For devices of compute capability 2.0 or higher,
there is also an L1 and L2 cache (whose size depends on the particular GPU architecture, but the
maximum sizes for available NVIDIA GPUs are 48k and 768k respectively3).

2.2 Numerical integration

Algorithmically, numerical integration on GPU is straightforward as the problem is both “embarass-
ingly parallel”, that is each element to be computed in parallel can be computed independently of
all the others, and entirely homogeneous, that is each computation for each neuron is identical.
See section 3 for details on how code can automatically be generated for numerical integration on
GPU. In addition, if we lay out the data in memory contiguously so that thread i (for neuron i)
accesses memory at locations x + i, y + i, etc., then all memory accesses will be fully coalesced.
However, this assumes that the numerical integration scheme uses a fixed step. For a variable time
step integration scheme, if neurons i and i + 1 use different time steps they will execute different
code, and this will cause divergence with a significant computational penalty, although there may
be ways to work around this (see below). For a review of precision issues with fixed time step
methods, see (Brette et al., 2007).

A feature of numerical integration on the GPU is that the limiting factor is often memory access
time (latency and bandwidth) rather than compute time. That is, the processor is often waiting
in an idle state for data to be transferred to and from global memory. While waiting for memory
transfers, the GPU will attempt to execute other operations. However if the ratio of computation to
communication is low, that is when performing a simple operation (just a few arithmetic operations)
on a large amount of data, then there is not enough computational work to fill this waiting time.
This is wasteful, and there are several ways to alleviate the problem. First of all, the amount of
wasted processor time is less for more complicated neuron models, and indeed switching to a more
complicated model can often have no impact on the computation time on GPU (although if the
model is more complicated because it has more variables then this will not be true, as this implies
greater data transfers). Another way to make use of wasted processor time is to use sub-steps to
improve accuracy. For example, if the main simulation loop has a time step of dt then integration
could be done with a timestep of dt/10. If the processor was idle because it was waiting for memory,
it can often be entirely free to use smaller time steps for integration. To some extent, this may
even enable variable time step methods to be used, because the divergence will only affect the
computation and not the memory access patterns. Alternatively, divergence in a variable time step
method could be avoided by always using the smallest time step of each group of neurons in a
warp (32 threads, the unit in which computational work is done in the GPU). This will mean that
many neurons are integrated at time steps smaller than necessary, however it may well not push

3For devices of compute capability 2.0, 2.1 and 3.0, including all Fermi and Kepler architecture GPUs, there is
64 KB on-chip memory which can be allocated to shared memory and L1 cache in a 48/16 or 16/48 arrangement.
The maximum L2 cache size for 2.x devices is 768 KB and for 3.0 it is 512 KB (NVIDIA 2012).
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the computation time to the point where it is taking longer than the memory access time. Further,
if there is some spatial structure to the neurons so that neurons with similar indices are receiving
similar inputs, then this may not be such a problem in practice.

An important issue for numerical integration of stochastic differential equations is the parallel
generation of independent random numbers. Previously, high quality random number generation
on GPU has been a difficult issue, however the latest version (4.1) of the CUDA development toolkit
includes random number generation using the Mersenne Twister algorithm as part of the cuRAND
library.

2.3 Spike propagation

2.3.1 Parallelisation strategies

The propagation of spikes in the network is the most difficult problem in GPU simulation. A number
of algorithms have been designed by several authors, optimized for particular cases (Nageswaran
et al., 2009a; Fidjeland and Shanahan, 2010; Nowotny, 2011a).

There are essentially two ways to parallelise spike propagation. The first is to parallelise over
neurons (Nageswaran et al., 2009a; Mutch et al., 2010). Each thread updates the total input of one
neuron by checking whether any of the presynaptic neurons has spiked. This requires a number of
operations at least equal to the total number of synapses in the network, executed at every timestep.
The proportion of these operations that are actually useful is F.dt, where F is the mean firing rate
in the network and dt is the timestep. A typical example would be F = 10 Hz and dt = 0.1 ms.
In this case, only 1% of all neurons are active during any timestep, and therefore most operations
executed by the kernel are not useful. In (Nageswaran et al., 2009a), this problem with sparse
firing is addressed by a trick that consists in storing the boolean values corresponding to whether
a presynaptic neuron has spiked in a bit array. The bit array is scanned by words of 32 bits, and
each word is only examined further if it is non-zero. This saves a large number of operations.

The second way to parallelise is over synaptic events, that is, over received spikes. This is the
approach taken in Nemo (Fidjeland et al., 2009). Each thread implements the effect of a spike
arriving at one synapse. With this approach, there are fewer useless operations when firing is
sparse. It was claimed that this strategy is a few times faster than the previous one in practical
cases.

2.3.2 Memory issues

In both strategies, GPU kernels need to access a large amount of memory at each timestep, since
all synaptic variables (e.g. weights) corresponding to received spikes must be accessed. More
importantly, the ratio of numerical operations to memory operations is not high, because synaptic
operations are often very simple (an addition). Since the speed of memory access is often the
limiting factor in GPU applications, optimizing memory transfers is probably the most critical
issue in spike propagation.

Let us consider the general situation, where conduction delays are heterogeneous. When a spike
arrives at a synapse, it produces a change in a target variable, for example: V → V + wij , where
V is the membrane potential and wij is the synaptic weight between neurons i and j. This means
loading the value of synaptic weight from memory and applying an operation. On a GPU, threads
have access to a fast memory that is shared between all threads of a multiprocessor. However, this
shared memory is very limited: up to 48KB in the latest boards. But clearly the number of synapses
is much larger in many practical applications. It is possible to reduce the storage requirements when
there are repeated patterns in the connectivity matrix (Mutch et al., 2010), but this is not a generic
case. Therefore, synaptic weights have to be stored in global memory (up to 8GB). But global
memory can be very slow, with a latency of 400-800 clock cycles, and bandwidth is also lower than
for shared memory, while there are generally few arithmetical operations per memory access (only
one in this example). This simple fact implies that the bottleneck of many neural simulations on
GPU is memory, at least in networks with many synapses. More precisely, the bottleneck is the
read/write memory access to the values of synaptic and, to a lesser extent, neuronal variables at
the times of synaptic events.
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How to maximize the speed of memory transfers? The key concept is coalescence (section 2.1).
When a specific memory address in global memory is requested, an entire chunk of 32, 64 or 128
bytes is retrieved. This means that memory transfers are much faster if variables that are accessed
at the same time are stored contiguously. This applies mainly to the second strategy outlined
above, in which spike propagation is parallelised over received spikes. However, since the synaptic
variables accessed during one timestep depend on the network model rather than on the specific
implementation, maximizing coalescence may also be relevant for all strategies, because it also
optimizes cache efficiency. We now outline a possible strategy to maximize coalescence.

2.3.3 Sorting synapses
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Figure 2: Synaptic propagation. A, A spike is transmitted to four target neurons with different
conduction delays. Each rectangle contains spikes that arrive at the same time at the target
synapses. Synaptic indices (numbers) are ordered so that synapses that are processed together are
consecutively numbered. B, With STDP, spikes are also backpropagated. Spikes with the same color
correspond to the same synapse, and therefore to a single synapse index. C, Synapses are colored
according to their assigned memory chunk, i.e., all green synapses belong to the same memory
chunk, etc. Synapses in the same group (circle) are simultaneously accessed. There is a forward
and a backward set of synaptic groups. The number near each circle is the number of memory
chunks represented in the synaptic group. D, A graph is built on the set of synapses by connecting
synapses belonging to the same group (here, the forward groups). The graph is partitioned into
memory chunks (dotted ellipses). A graph cut corresponds to simultaneous access of two memory
chunks.

This strategy is exploited in the simulator Nemo (Fidjeland et al., 2009). All synapses made by
the same presynaptic neuron with the same conduction delays will receive spikes at exactly the
same time (figure 2A). Therefore, all the corresponding synaptic variables will be simultaneously
accessed. To maximize coalescence, one simply sorts the synaptic indices so that synapses with the
same presynaptic neuron and conduction delay have consecutive indices.

Although this strategy works well in many cases, it fails to generalize to the simulation of plas-
tic synapses, unless synaptic weights are modified offline. In most long term synaptic plasticity
rules (spike-timing-dependent plasticity, STDP), both presynaptic and postsynaptic spikes produce
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changes on synaptic variables. This implies that each spike has to be propagated forward (from
presynaptic neuron to synapses), but also backward (from postsynaptic neuron to synapses). For
backward propagation, the aforementioned coalescence condition means that synaptic variables with
the same postsynaptic neuron and backward conduction delay should reside in the same memory
chunk. In Figure 2B, spikes with the same colour correspond to the same synapse, for forward
(right) or backward (left) propagation. Vertically aligned spikes are delivered at the same time and
are grouped together. The problem is that the same synapse may belong to two different groups of
simultaneously accessed synapses, depending on whether the forward or backward direction is con-
sidered. For example, spikes coloured in blue correspond to a synapse that belongs to two different
groups. Thus, the optimal indexing for a particular direction may be bad for the reverse direction.

Therefore, coalescence can only be approximate. The problem can be mathematically formulated
in the following way (figure 2C). For each direction (forward and backward), we define a partition
of the set of synapses into groups of simultaneously accessed synapses. That is, in the forward
partition, all synapses with the same presynaptic neuron and the same forward conduction delay
are grouped together. In the backward partition, all synapses with the same postsynaptic neuron
and the same backward conduction delay are grouped together. Each synapse is assigned to a
memory chunk. The cost of accessing the synaptic variables in a synaptic group is proportional
to the number of chunks represented in that group. Under some homogeneity assumptions, the
average cost is proportional to the sum of the costs of all groups. The goal is to find an assignment
of synapses to chunks that minimizes this cost.

In this formulation, the problem is difficult to solve in general. One may express an approximation
in terms of graph theory (figure 2D). We build a graph by connecting synapses that are simulta-
neously accessed (for the forward direction: same presynaptic neuron, same conduction delay). An
assignment of synapses to memory chunks is a partition of the graph, with each set representing a
chunk. We want synapses that are simultaneously accessed to belong to the same memory chunk.
In other words, the partition should avoid cutting the edges of the graph. Finding a partition that
minimizes the number of cuts in a graph is known as a graph-cut problem in computer science.
One may build one graph for the forward direction and another one for the backward direction, and
minimize the total number of cuts, or one may build a single graph by merging the forward and
backward graphs.

3 Code generation

Writing code for GPUs is difficult and time consuming, however a significant fraction of the work
is fairly routine and can in principle be automated.

Code generation has been extensively used in the systems biology community (Garny et al. 2008;
Miller et al. 2010; see Goodman 2010 for a review). The first neural network simulator to use code
generation techniques, for CPU, was Neuron (Carnevale and Hines, 2006). Users enter the definition
of a neuron model in a domain specific language (DSL) called NMODL (Hines and Carnevale 2000;
based on the earlier MODL language of SCoP, Kootsey et al. 1986). When the user compiles this
NMODL definition, it is parsed and converted into C code, which is then compiled using a standard
C compiler into a library which is dynamically loaded from the main program. This technique
is heavily used in the Brian simulator (Goodman and Brette, 2008, 2009; Goodman, 2010) for
generating both Python and C++ code from user-specified models given as differential equations
in standard mathematical form, which is transparently generated, compiled and called when the
user runs their script. There are currently efforts underway to generate simulation code from the
NeuroML (Gleeson et al., 2010) and NineML (Raikov et al., 2011) model description languages.

Code generation has been proposed as particularly useful for GPUs in order to tune a program at
runtime, as minor variants on the program can have surprisingly large effects on performance (see
section 4, Klöckner et al. 2009 and Pinto and Cox 2011).

For neural network simulation, code generation has already been used in several existing projects.
The Brian simulator uses code generation on GPU for its model fitting toolbox, which was able to
give a 60x performance boost compared to CPU for this “embarassingly parallel” problem (Rossant
et al., 2010, 2011). The GeNN (GPU enhanced Neural Networks) simulator (Nowotny, 2011b)
allows the user to specify a neuron model by giving the set of variables, parameters and a numerical
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integration step code fragment, and generates a CUDA kernel which is then compiled into a library
which is linked to the main program.

In addition to the available software reviewed above, there are several efforts in development for
neural network simulation on GPU which make use of code generation. The Brian simulator already
contains experimental code for converting model specifications into GPU code which will be available
in the next major release, and both GeNN and NeMo (Fidjeland et al., 2009) are working towards
integrating the code generation framework from Brian into their simulators.

1 2 3 4

Brian

NeuroML
/NineML

Neuron
GeNN

Generation Insertion
into
template

Dynamic
compilation

Static
compilation

101000101010111
101000101010100
001010010101010
111101010001010
100010010100010
101001110010100
100010010010000

001010100111001
010010001001001
000001010010111
010101011101010
100001001111010
100101000101111
111010101010010

<meta:properties>
<meta:property tag="Neuron type" value="Abstract" <!--

Preferred form for property element since v1.7.1 -->
</meta:properties>

<segments>
<!-- Soma segment-->

<segmentid="0" name="SomaSeg" cable=
<proximal x="0" y="0" z="0" diameter="10"
<distal x="10" y="0" z="0" diameter="10"/

</segment>

<!-- Segments in cable 1-->

<segmentid="1" name="DendSeg1" parent=
"1">

<proximal x="5" y="0" z="0" diameter="5"
<distal x="5" y="10" z="0" diameter="5"/>

</segment>

const double I = _arr_I[_neuron_index];
const double Vt = _arr_Vt[_neuron_index];
const double V = _arr_V[_neuron_index];
double _temp_V = 100.0
double _temp_I = -100.0
double _temp_Vt = 10.0 *Vt;

_ arr_V[_neuron_index]+ =_ temp_V*dt;
_ arr_I[_neuron_index]+ =_ temp_I*dt;
_ arr_Vt[_neuron_index]+ =_ temp_Vt*dt;

__global__ void stateupdate(int64_t _num_neurons, dt)
{

int _neuron_index = blockIdx.x * blockDim.x + threadIdx.x;
i f((_neuron_index<(0))||(_neuron_index>=(_num_neurons)))

return;
const double I = _arr_I[_neuron_index];
const double Vt = _arr_Vt[_neuron_index];
const double V = _arr_V[_neuron_index];
double _temp_V = 100.0*I -
double _temp_I = -100.0*I;
double _temp_Vt = 10.0 - *Vt;

_ arr_V[_neuron_index]+ =_ temp_V*dt;
_ arr_I[_neuron_index]+ =_ temp_I*dt;
_ arr_Vt[_neuron_index]+ =_ temp_Vt*dt;

}

eqs=Equations('''
dV/dt=(-(V-Vr)+x)*(1./taum) : volt
dx/dt=(-x+y)*(1./taupsp) : volt
dy/dt=-y*(1./taupsp)+25.27*mV/ms+
(39.24*mV/ms**0.5)*xi : volt
''')
# Neuron groups
P = NeuronGroup(N=1000, model=eqs,
threshold=Vt,reset=Vr,refractory=1*ms)
Pinput = PulsePacket(t=50*ms,n=85,sigma
# The network structure
Pgp = [ P.subgroup(100) for i i n range )]
C = Connection(P,P,'y')
for i i n range(9):
C.connect_full(Pgp[i],Pgp[i+1],weight)
Cinput = Connection(Pinput,Pgp[0],'y')
Cinput.connect_full(weight=weight)
# Record the spikes
Mgp = [SpikeMonitor(p) for p i n

INITIAL {
settables(v)
r = ralpha/(ralpha+rbeta)
s = (salpha*(dbeta+dalpha) - (salpha*dbeta))/

((salpha+sbeta)*(dalpha+dbeta) - (salpha*dbeta))
d = (dbeta*(salpha+sbeta) - (salpha*dbeta))/

((salpha+sbeta)*(dalpha+dbeta) - (salpha*dbeta))
}

DERIVATIVE states {
settables(v)
r' = ((ralpha*(1-r)) - (rbeta*r))
d' = ((dbeta*(1-s-d)) - (dalpha*d))
s' = ((salpha*(1-s-d)) - (sbeta*s))

}

Figure 3: Steps involved in code generation. (1) High level, abstract representation such as equations
in Brian, XML description in NeuroML/NineML, or NMODL file in Neuron. (2) Code fragment
generated from high level representation, or provided by user (GeNN), to perform a numerical
integration step. (3) Code inserted into a template file to generate a compilable source file. (4)
Executable object either compiled statically (Neuron, GeNN) or dynamically (Brian).

Neural network simulation primarily consists of two phases, numerical integration of differential
equations (section 2.2) and propagation of spikes via synapses (section 2.3). Most of the software
mentioned above uses code generation mainly for integration and not for propagation (although
Brian and NeMo aim to use code generation for propagation too). There are several different
approaches taken, although they are all fairly similar. The process consists of four steps illustrated
in figure 3: (1) a model specification is given by the user, (2) this is then converted into code to
perform a single numerical integration step, (3) this is inserted into a template to form a complete
compilable source file, and (4) the source file is compiled and run. Neuron, Brian, NeuroML and
NineML all share the same approach to step (1), namely giving the model specification in a high
level manner (although each has a different high level representation). GeNN differs by requiring
the user to directly specify the code for the numerical integration step in (2), although an extension
is being developed to convert models in Brian’s specification format to GeNN format. Neuron and
GeNN currently perform step (4) statically, that is generation and compilation of source code for
a model is performed in one step, and this is then linked to the main program which can be run in
a second step. By comparison, Brian uses runtime code generation, that is the code is generated,
compiled and run automatically when the user runs their Brian script. Efficiency is maintained by
caching the compiled code and only recompiling when the model specification changes.

4 Tuning algorithms to hardware and model

It is common when programming for GPUs to find that minor changes in the algorithm can have
large effects on the running time, and that the optimal algorithm for a given set of data can also
vary enormously based on the data in ways which are difficult to predict. Consequently, it is very
important to test multiple algorithms and profile them to determine which is the most efficient. The
software package PyCUDA (Klöckner et al., 2012) is designed to facilitate this process, allowing
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runtime generation, compilation and running of GPU code. This process could also be automated,
generating variants of a program at runtime and dynamically adapting the program to the data
using runtime profiling. A similar approach has proved successful for the Java language, where
Just-In-Time (JIT) compilation techniques have allowed this interpreted language to run almost as
fast as or in some cases even faster than compiled code (Bull et al., 2001).

In figure 4 we demonstrate the drastic effect that algorithmic variations can have on a GPU program
for different data sets. We present pseudocode for these algorithms, however they are relatively
näıve and the results are included here for illustrative purposes only. As can be seen, the optimal
algorithm is not easily predictable from the data even in this simple case where only two parameters
vary, and the differences between the fastest and slowest algorithms can be substantial.

Figure 4: The differences between algorithmic variants for different parameters. The simulated
network is a two layer feedforward network with 100 abstract neurons in the source layer which fire
spikes with a Poisson distribution with rate set to generate the given total number of spikes per
time step of 0.1ms, and 105 neurons in the target layer (which consists of null neurons which do
nothing except to receive their inputs). This network is designed purely to illustrate the costs of
propagating spikes, and not the costs of simulating actual neuron models. The parameters are the
sparseness of the connectivity matrix between layers (y-axis) and the number of spikes generated in
the first layer per time step (x-axis). Simulations were run on an NVIDIA GeForce GTX 580. (A)
The best algorithm indicated by different colours. Algorithms are described in text: VPO (green),
VSN (yellow) and VSSN (purple). There are three distinct regions, in the lower left region all
algorithms perform roughly equally (see panel B). In the upper region, VSN performs best, and in
the lower right region VSSN performs best. The optimal algorithm is not a simple function of these
two parameters. (B) The ratio between the computation time of the slowest and fastest algorithms,
showing that the choice of algorithm makes a large difference in some cases. (C) The ratio between
the second fastest and fastest algorithms. This ratio is high in parts of both the regions where VSN
and VSSN are identified as the best algorithm, showing that these two algorithms do not perform
similarly well in these areas. This shows that all algorithms perform badly in one region of the
parameter space.

Briefly, the algorithms are as follows (pseudocode is given in appendix A):

• Vectorisation over postsynaptic offset (VPO). Each thread loops over the spiking neurons,
and thread i propagates the synaptic weight to the ith target neuron of the spiking neuron.
The connectivity matrix is stored as a CSR sparse matrix, so reading synaptic targets and
weights is coalesced, however writing to the target is uncoalesced and uses an atomic operation
which will be slow when each target neuron is receiving many synaptic inputs. The number
of threads is equal to the maximum number of postsynaptic targets over all the presynaptic
neurons, so in order to make efficient use of the GPU this number should be large, and in
order not to waste threads, the number of postsynaptic targets should be fairly homogeneous
across the presynaptic neurons. This algorithm performs poorly in general, but does as well
as the other two algorithms in the region where uncoalesced memory accesses are unavoidable
(i.e. the region where the number of active synapses per timestep is low).

• Vectorisation over synaptic index and neuron index (VSN). This algorithm consists of two
phases. In the first phase, the modification of target state variables is computed in a shared
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memory buffer. In this stage, the thread index i is used as a synaptic index. Each thread
loops over the spiking neurons, and applies the corresponding synaptic operation (typically an
addition of a weight). In the second phase, this shared memory buffer is added to the target
state variables in global memory in a single coalesced operation. In this phase, the thread
index i is used as a neuron index in the target group. These two phases are combined in a
single kernel, because the shared memory is lost between kernel launches. The connectivity
matrix here is stored as a CSR sparse matrix broken into columnar chunks of width the
block size, and so again reading synaptic targets and weights is coalesced. Like the previous
algorithm, the first phase also uses an atomic operation but this time it operates on shared
memory which is much faster than global memory.

• Vectorisation over spikes, synaptic index and neuron index (VSSN). The basic algorithm is
the same as VSN, with the first phase slightly modified. In this phase, if the number of
synapses in a given columnar block is substantially lower than the size of the block, then in
order to waste fewer threads, several spikes are processed in the same block. This algorithm
performs significantly better than the VSN algorithm unless the connectivity matrix is fairly
dense in which case the additional overheads of packing the loop into the first phase outweigh
the benefits.

The full code, including the code for figure 4 is available at http://neuralensemble.org/trac/

brian/browser/trunk/dev/ideas/cuda/propagation?rev=3213.

5 Discussion

Because graphics cards are cheaper and easier to maintain than clusters, there is growing interest in
the development of neural network simulation on GPUs. In this note, we have reviewed the ongoing
efforts in the community and outlined a number of critical issues. From an algorithmic point of
view, the main issue is the efficient propagation of spikes across the network. The bottleneck is
memory rather than pure computation speed, because global memory access is slow on GPUs.
From a usability point of view, the main issue is to turn user-defined models into runnable GPU
code. Efficiently programming GPUs is tricky, and this task should not be left to the users. A
general strategy is code generation, that is, the automatic generation of compilable code from a
model description. Since there are many boards with different specifications and limitations, and
also models with different types of connectivity, code generation and model inspection may also
allow the simulator to pick the most efficient algorithm for a particular combination of hardware
and model.

We have restricted this discussion to the simulation of spiking neuron models, where interactions be-
tween neurons are mediated by discrete events (spikes). Other technical issues arise if gap junctions
(electrical synapses) are considered. In this case, neurons interact continuously rather than at dis-
crete times. This requires different algorithms for GPUs, but these are in principle less challenging
than spike propagation algorithms. Indeed, simulating continuous interactions essentially amounts
to calculating matrix products, for which there are standard GPU algorithms (Bell and Garland,
2009). Another important point that we have not addressed is compartmental modelling, that is,
the simulation of neurons with a spatial extent. Such simulations usually rely on compartmentaliza-
tion, that is, the neuron’s morphology is divided into a number of isopotential compartments that
are electrically coupled (Mascagni and Sherman, 1989). The same algorithms can be used when
the number of compartments is small. However, realistic simulations with hundreds of compart-
ments require specific techniques. Electrical propagation along an axon or a dendrite is described
by the cable equation, a non-linear elliptic partial differential equation. With most techniques,
the numerical integration is separated in two steps: the integration of the nonlinear equations for
the channel variables, and the integration of the linear partial differential equation describing the
electrical diffusion across the neuron. Because channel variables are independent, the first step is
straightforward to parallelize. The second step is more difficult. Simulating the cable equation on a
branch amounts to solving a tridiagonal linear system, for which a number of algorithms have been
implemented on GPU (Zhang et al., 2010). Solutions for different branches can be merged with the
domain decomposition method (Mascagni, 1991).

Although neural network simulation on GPUs is still in its infancy, we believe that users should

10



benefit from these techniques in the next few years. It will make parallel simulation of neural
networks available to a large audience.

A Pseudocode

Pseudocode for the algorithms listed in section 4 is given below.

Vectorisation over postsynaptic offset (VPO):

for synaptic_index = 0 to max_num_synapses-1 in parallel:

for neuron in spiking_neurons:

if synaptic_index<num_synapses[neuron]:

data_offset = row_offset[neuron]+synaptic_index

target_index = target_indices[data_offset] # coalesced

weight = weights[data_offset] # coalesced

atomicAdd(target_variable_ptr+target_index, weight) # uncoalesced

Vectorisation over synaptic index and neuron index (VSN):

# block_size is the number of threads in a block for this kernel launch

# stage is an array of size block_size in shared memory

for target_index = 0 to num_target_neurons-1 in parallel:

thread_index = target_index % block_size

block_index = target_index / block_size

stage[thread_index] = 0.0

__syncthreads() # wait until all threads reach here before continuing

for neuron in spiking_neurons:

block_offset = neuron*(num_blocks+1)+block_index

data_offset = row_offset[block_offset]+thread_index

if data_offset<row_offset[block_offset+1]:

# coalesced

stage_index = target_indices[data_offset] % block_size

weight = weights[data_offset]

# uncoalesced, but in shared memory

atomicAdd(stage+stage_index, weight)

__syncthreads()

# coalesced

target_variable[target_index] += stage[thread_index]

Vectorisation over spikes, synaptic index and neuron index (VSSN):

# block_size is the number of threads in a block for this kernel launch

# stage is an array of size block_size in shared memory

for target_index = 0 to num_target_neurons-1 in parallel:

thread_index = target_index % block_size

block_index = target_index / block_size

spikes_per_block = block_size/max_num_synapses

stage[thread_index] = 0.0

__syncthreads()

for spike_block = 0 to num_spikes/spikes_per_block-1:

spike_index = spike_block*spikes_per_block+thread_index/max_num_synapses

neuron = spiking_neurons[spike_index]

block_offset = neuron*(num_blocks+1)+block_index

data_offset = row_index[block_offset]+thread_index%max_num_synapses

if data_offset<row_index[block_offset+1]:

# coalesced

stage_index = target_indices[data_offset] % block_size

weight = weights[data_offset]

# uncoalesced, but in shared memory

atomicAdd(stage+stage_index, weight)
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__syncthreads()

# coalesced

target_variable[target_index] += stage[thread_index]
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