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The responses of neurons to time-varying injected currents are repro-
ducible on a trial-by-trial basis in vitro, but when a constant current is
injected, small variances in interspike intervals across trials add up, even-
tually leading to a high variance in spike timing. It is unclear whether this
difference is due to the nature of the input currents or the intrinsic prop-
erties of the neurons. Neuron responses can fail to be reproducible in two
ways: dynamical noise can accumulate over time and lead to a desynchro-
nization over trials, or several stable responses can exist, depending on the
initial condition. Here we show, through simulations and theoretical con-
siderations, that for a general class of spiking neuron models, which in-
cludes, in particular, the leaky integrate-and-fire model as well as nonlin-
ear spiking models, aperiodic currents, contrary to periodic currents, in-
duce reproducible responses, which are stable under noise, change in ini-
tial conditions and deterministic perturbations of the input. We provide
a theoretical explanation for aperiodic currents that cross the threshold.

1 Introduction

The responses of neurons to dynamic stimuli have been shown to exhibit
high reliability in vitro (Mainen & Sejnowski, 1995; Hunter, Milton, Thomas,
& Cowan, 1998; Fellous et al., 2001; Beierholm, Nielsen, Ryge, Alstrom, &
Kiehn, 2001) and in vivo (Berry, Warland, & Meister, 1997; Nowak, Sanchez-
Vives, & McCormick, 1997; Reich, Victor, Knight, Ozaki, & Kaplan, 1997;
Berry & Meister, 1998; Buracas, Zador, DeWeese, & Albright, 1998; Bair &
Koch, 1996). In this case, spike timing is reproducible on a trial-by-trial
basis up to a precision of 1 ms or less, even a long time after stimulus
onset (1 s in Mainen & Sejnowski, 1995). Consequently, in a variety of neu-
rons and for time-varying stimuli, spike times convey more information
about the stimulus than spike count alone does (Victor & Purpura, 1996;
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Figure 1: Three cases regarding the reproducibility of neuron responses to a
given stimulus. (A) Small variances in ISIs accumulate, so that after some time,
spikes are not synchronized between trials. (B) Spike timing is reliable even in
the long run but depends on the initial state of the neuron—here, two stable so-
lutions coexist. (C) Spike timing is reliable; noise does not accumulate over time.

de Ruyter van Steveninck, Lewen, Strong, Koberle, & Bialek, 1997; Bura-
cas et al., 1998; Reich, Mechler, Purpura, & Victor, 2000; Reinagel & Reid,
2000). Rate-modulated Poisson processes do not account for these proper-
ties (Victor & Purpura, 1996; Baddeley et al., 1997; de Ruyter van Steveninck
et al., 1997; Berry et al., 1997; Nowak et al., 1997; Reich, Victor, & Knight,
1998; Kara, Reinagel, & Reid, 2000; Reich et al., 2000). On the other hand,
stationary stimuli elicit spike trains with very coarse precision (Mainen &
Sejnowski, 1995; Berry et al., 1997; de Ruyter van Steveninck et al., 1997; Bu-
racas et al., 1998). Mainen and Sejnowski (1995) injected a constant current
into a neuron and compared the output spike trains over repeated trials. At
the beginning, spikes occurred at the same time in all trials, but then small
variances in interspike intervals (ISIs) began to accumulate, so that spikes
eventually were totally desynchronized over trials. It is not clear why this
does not happen with time-varying currents.

What happens when the responses of a neuron to a given stimulus are
compared over repeated trials, knowing that each trial is different due to
intrinsic noise? Three cases may occur, as illustrated in Figure 1:

Case 1: Smallvariances inISIsaccumulate, so that eventually spikes tend
to desynchronize over trials.
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Case 2: Spike times are reproducible in the long run but depend on the
initial state of the neuron (e.g., on the membrane potential at the
onset of the stimulus); that is, several stable responses exist.

Case 3: Spike times are reproducible in the long run and do not depend
on the initial state of the neuron.

Experimentally, case 1 has been shown to occur for constant input currents,
whereas time-varying stimuli induce reproducible responses (Mainen & Se-
jnowski, 1995), although the experimental procedures used in these studies
do not allow us to distinguish between cases 2 and 3. Only in the last case
can the responses be considered truly reproducible.

In this article, we show that for a general class of spiking neuron models,
which includes, in particular, the leaky integrate-and-fire model (Lapicque,
1907; Knight, 1972) as well as nonlinear spiking models, all three cases can
occur if the input current is periodic, while aperiodic currents induce re-
producible responses. In addition to numerical simulations, we put forth
a theoretical explanation of this property for aperiodic currents that os-
cillate around threshold. The conditions required for our explanation are
not fulfilled by the nonleaky integrate-and-fire model—also called perfect
integrator—which is never reliable.

2 Materials and Methods

2.1 What Is Reliability? A neuron is said to be reliable when its re-
sponses to a given stimulus are reproducible. Thus, reliability is a priori
stimulus dependent. The experimental results of Mainen and Sejnowski
(1995) show that with a constant current, the responses of a neuron in dif-
ferent trials are initially synchronous, but then small variances in ISIs add
up and the spikes become desynchronized. If the intrinsic noise of neurons
were lower, it would simply take the spikes longer to desynchronize, but in
the end, the result would be the same. However, with nonconstant currents
resembling synaptic inputs (low-pass filtered gaussian noise), desynchro-
nization does not happen. Inboth cases, intrinsic noise islow at the timescale
of a single ISI, but it eventually leads to a desynchronization only in the case
of a constant current.

Thus, we propose the following definition of reproducibility: responses
to a stimulus are considered reproducible if the spike time jitter remains
of the order of the intrinsic noise, however long we wait, o1, equivalently,
that any given precision can be reached if the level of noise is low enough.
This definition allows us to distinguish the two cases mentioned above.
However, neuron responses can also fail to be reproducible if spike timing
depends on the initial condition, that is, the membrane potential at stimulus
onset. Therefore, we shall consider in the definition the asymptotic spike
time jitter induced not only by intrinsic noise but also by the dispersion of
initial conditions.
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Our aim is to show that depending on the stimulus, all of the three
cases mentioned in section 1 can occur. Furthermore, we shall show that
a broad class of models has reproducible responses to aperiodic stimuli.
We pay particular attention to leaky models—in a general sense, as defined
below. However, we also introduce and study other types of models—the
perfect integrator and nonleaky models—to show that the nonreliability of
the perfect integrator is the exception rather than the rule.

2.2 Models.

2.2.1 The General Model. We consider spiking neuron models, where the
membrane potential V evolves according to the following one-dimensional
differential equation,

dd_‘t/ = f(V, 1), (2.1)

with the spike modeled as follows: when the potential reaches a threshold
Vi, it is reset to V. This general definition includes many different models,
such as the leaky integrator (Lapicque, 1907; Knight, 1972) and the perfect
integrator (Knight, 1972). The equation needs not be linear.

Such models are not always reliable, as the example of the perfect inte-
grator shows. However we shall show that a very broad class of models of
this kind exhibits reproducible responses.

2.2.2 Leaky Models. One example of such a model is the leaky integrator
(Lapicque, 1907; Knight, 1972), where the membrane potential V' evolves
according to the following equation:

av

r—= =~V + RI(), (2.2)

where 7 is the membrane time constant, R is the resistance, and I(f) the input
current.
We generalize the notion of leak by defining a leaky model as a model of
type 2.1 satisfying the following condition:
of

ﬁ<0.

This includes the case when 7 and R vary in time and also includes nonlinear
equations. Basic mathematical properties of leaky models are summarized
in the article appendix.

In our simulations, we used a leaky integrator with r = 33 ms, R = 200
MQ, Vi = 15mV, and V;, = —=5mV, and a nonlinear leaky model defined by

dv
== —aV® + RI(b), (2.3)
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with the same values for 7, R, V;, and V,, and a = 4444 V2 (thisis forscaling
reasons). This corresponds to a neuron model with rectification, that is, with
a voltage-dependent leak. We chose these parameter values so as to obtain
figures of the same magnitude as in experimental results. However, the
actual value of parameters has no influence on the results, since two sets of
parameters actually define the same model (change of variables).

2.2.3 Nonleaky Models. We shall show that the leak is not necessary to
obtain reliable spike timing. We simulated an example of a nonleaky model,
described by the following equation,

av
i VI(t) + k, (24)
where I(f) is the input current, with V; =1, V, = 0, ¢ = 33 ms, and k = 1.
This model is leaky only if I(t) < 0 for all t. Otherwise, the solutions of
equation 2.4 diverge exponentially in all intervals where I (t) > 0. However,
we shall see that it does not prevent the model from having reliable spike
timing.
Equation 2.4 does not correspond to a neuron model; we chose it only to
illustrate our explanation of reliability.

2.2.4 Perfect Integrator. As an example of a nonreliable model, we have
taken the common nonleaky integrate-and-fire model,

0] 25)

where f(t) is an input function. We used © = 12.5 ms (in order to have
comparable timescales), V; = 1, and V, = 0. We shall see in the simula-
tions that this model is never reliable. Mathematically, the unreliability of
this model results from the fact that the distance between two solutions is
constant modulo 1, and thus dynamical noise always accumulates (Knight,
1972).

2.3 Stimuli. We tested the reproducibility of model responses to various
periodic and aperiodic currents. We also assessed the influence of current
parameters, such as amplitude and mean, on spike timing. For this purpose,
we used the following generic method: we define a basis function B(t) as
one with values between —1 and 1, such as a sinusoidal wave, and then
derive a family of currents by a parameterized affine change of variables,
for example, I(t) = Iy, + 0.5 + pB(t) with p € [0, 1], where Iy, is the input
current threshold (the minimum constant current eliciting a response). In
this example, we obtain a family of currents with a fixed DC part and whose
amplitude varies from 0 to 1.
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Figure 2: Construction of a 2D spike density figure. (A) Basis function. A family
of currents is defined with a parameter controlling the current mean. (B) Trials
for a given parameter. Every short vertical line represents a spike. (C) PSTH
computed from 2000 trials with the parameter used in B. (D) The PSTH is con-
verted into gray rasters, with the higher the firing rate, the darker the lines.
(E) Gray rasters for all parameters are collected and arranged vertically.

In most simulations, we chose the change of variables so that the current
is always above threshold for p € [0, 0.5] and oscillates around it for p €
[0.5,1].

Subsequently, we want to display the reliability of model responses for
all the parameters of a given family of currents on a single figure. How this is
done isillustrated by Figure 2. For a given basis function (see Figure 2A), we
compute the outputs of a large number of trials for each parameter value (see
Figure 2B) and then compute a poststimulus time histogram (PSTH) using
small time bins (see Figure 2C), which we convert into a line of gray rasters
(see Figure 2D). Arranging these lines vertically, we get a two-dimensional
spike density figure (see Figure 2E), where histograms for all parameter
values between 0 and 1 are represented simultaneously, with parameter on
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the vertical axis and time on the horizontal axis. This allows us to visualize
not only the reliability of spike timing for every parameter value, but also
the effect of parameters on spike timing and reliability. Thus, we assess
the stability of spike timing under noise as well as under deterministic
perturbations.

For periodic currents, we used sine waves, and for aperiodic currents,
we used two types of basis functions: (1) a triangle-shaped function, with
the slope of each line chosen according to a random uniform distribution
between two values, and (2) a noisier function: a low-pass filtered gaussian
noise that we distorted so that its magnitude distribution over time was uni-
form between —1 and 1 (see, e.g., Figure 4.2.2). This was done to distinguish
between the input current always above threshold from the input current
oscillating around it. The specific shape of input currents did not influence
the results.

2.4 Measure of Precision. Precision of spike timing was assessed from
PSTHs. Most previous measures relied on the identification of “events”
(Mainen & Sejnowski, 1995), defined as peaks in the PSTH, whose width
is an estimate of the precision. However, assessing the precision only in
events might lead to an overestimate, as observed in Tiesinga, Fellous, &
Sejnowski (2002a), since the periods when the PSTH is not peaked enough
are discarded. Other measures are based on the variance of the PSTH about
the mean output frequency (Hunter et al., 1998), but this measure is mis-
leading when the output frequency varies over time.

The measure we propose here is based on the entropy of distributions
(Borst & Theunissen, 1999). We cannot directly compute the entropy from a
PSTH, because this is not a normalized probability distribution. We choose
the successive ISIs of one trial to divide the PSTH in successive windows.
The models we use have the property that for every other trial, the neuron
spikes exactly once in each of these windows. Equivalently, we can split the
PSTH in successive windows containing 2000 spikes (the number of trials).
We can evaluate the precision of spike timing in any window from the PSTH
using the following formula,

= =D _p)log, p().

where p(i) is the number of spikes in time bin i divided by the number of
trials. H is the entropy of the distribution of spike times in the window and
represents the number of bits required on average to express in which time
bin a neuron spikes. One advantage over event-based measures is that if
there are m stable solutions, each PSTH window contains m peaks, which
gives a higher entropy. However, this quantity depends on the size of the
time bin used for the PSTH. We can translate it into a time measure that does
not depend on the size of the time bin in the following way. An entropy of H
bits is the entropy of a uniform distribution over 2 time bins, that is, over
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an interval of size 6t2H, where 6t is the length of the time bin, which gives
the following formula:

Stexp (— Z p(i) logp(i)) . (2.6)

As 6t tends to 0, this quantity tends to

exp (—/p(t) logp(f) dt) ,

where p(t) represents the spike time density. Thus, if &t is small enough,
the precision measure given by formula 2.6 does not depend on the length
of the time bin. As an example, this measure gives a precision of A for a
uniform distribution over an interval [t — A/2,t + A/2] and a precision of
40 for a gaussian distribution with standard deviation o.

We used formula 2.6 to compute the precision in each window and aver-
aged over all successive windows, discarding the first 2.5 s of the 10 s runs
(to take the time of convergence into account).

In the results, we shall say that neuron responses have a high precision
if their measure of precision given by formula 2.6 is small.

2.5 Details of Simulations. Input currents were sampled at a rate de-
pending on the required resolution—2000 Hz in most simulations with the
leaky integrator. Equations for the linear leaky integrator and the perfect
integrator were solved by exact integration. The equations of the two other
models—the nonlinear and the nonleaky ones—were integrated by the Eu-
ler method (these were simulated mostly for illustration, and only on a
short timescale). Spike timing was computed by bisection with a precision
of 1 us using the following observation: over a single current sampling step
(1/2000 s), equation 2.1 reduces to an autonomous scalar equation because
the input current is constant, which means that V (f) is monotonous over
this duration, and the time when the potential hits threshold can then be
computed unambiguously and quickly by bisection.

A small noise was added to the potential at each time step of integra-
tion. The type of noise used is irrelevant because it tends to a gaussian
noise as the time step tends to 0. Therefore, for computational ease, we
used a uniform noise with an amplitude ranging from 2.5 mV.s 2 to
3.5 mV.s~/2, Reliability of spike timing was assessed by 2000 repeated
trials for every tested model and input current over an extended period
of time—10 s for the leaky integrator—and PSTHs were computed with
a 0.5 ms time bin. Doing many trials avoided the problem of smoothing
PSTHs.
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3 Theoretical Predictions

3.1 Periodic Currents. Responses to periodic currents highlight the two
difficulties that may prevent the neuron responses from being reproducible:
(1) a small noise may accumulate over time, or (2) several stable responses
may coexist.

Because periodically driven leaky models are related to the dynamical
theory of homeomorphisms of the circle (Denjoy, 1932; Coddington & Levin-
son, 1955; Arnold, 1961; Herman, 1977; Keener, 1980; Veerman, 1989), their
mathematical properties are well known (Knight, 1972; Keener, Hoppen-
steadt, & Rinzel, 1981). However, the reliability of periodically driven neu-
ron models is a recent issue (Tiesinga, 2002; Tiesinga, Fellous, & Sejnowski,
2002b). We describe the available theoretical results and explain how they
relate to our problem.

The dynamics of leaky models depend on the value of the rotation num-
ber, defined as the ratio of the input frequency to the output spike rate:

¢ It is rational if and only if the output pattern of spikes is (asymptoti-
cally) periodic, the period being a multiple of the input period. When
this pattern is stable under perturbations, this is called phase locking,
which has also been studied experimentally (Rescigno, Stein, Purple,
& Poppele, 1970; Ascoli, Barbi, Chillemi, & Petracchi, 1977; Guttman,
Feldman, & Jakobsson, 1980; Koppl, 1997). There is p : g phase locking
when a stable pattern of p spikes is produced every q periods of the
input. Thus when the model is phase-locked, a small noise does not
accumulate over time. However, several stable responses may coexist.
As noted in Tiesinga (2002), if a p : g phase-locked solution is shifted
by a multiple of the input period, a new solution is obtained, so that at
least g distinct stable solutions exist. Thus, regarding reliability, cases 2
and 3 can appear.

* When it is irrational, under some regularity conditions, the dynamics
of the model are topologically equivalent to the dynamics of a model
with constant input, which means that a small noise always accumu-
lates over time, however small it may be. Thus, case 1 occurs.

When the input current is parameterized, for example, by its frequency
and mean, the rotation number is a continuous function of the parameters,
which implies that cases 1, 2, and 3 occur in any area of the parameter space
where the rotation number is not constant. Thus, there is no systematic
relationship between current parameters and reliability. However, while the
set of parameters where case 1 occurs has positive measure if the current
is always above threshold (Herman, 1977), it has measure zero, and thus is
not observable, if the current oscillates around threshold (Keener, 1980; see
Veerman, 1989, for a rigorous mathematical proof). To sum up, cases 2 and
3 occur in any area where the current oscillates around threshold; cases 1,
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4

Figure 3: A current below threshold results in an interval where no spiking
is possible. Arrows represent whether the vector field points up or down at
threshold.

2, and 3 occur in any area where the current is above threshold (unless
the rotation number is constant). The (asymptotic) spike time jitter is an
increasing function of the level of intrinsic noise, which tends to 0 as the
noise variance tends to 0 when the model is phase-locked and to a positive
number when it is not. Quantitatively, this function depends on various
detailed aspects of the dynamics, such as the Lyapunov exponent (Tiesinga,
2002).

3.2 Aperiodic Currents. In the case of aperiodic currents, such as fil-
tered gaussian noise, we will see in the numerical results that neither case 1
nor case 2 arises. Other studies suggest that the responses are reliable when
the current is above threshold (Pakdaman & Tanabe, 2001). Here, we ex-
plain why this should also be so when the input current oscillates around
threshold.

Our explanation relies on the construction of a set of possible spike times,
which is done with no noise on the dynamics. In the appendix, we prove
that this set is stable under noise and deterministic perturbations.

Let t1 be a time when the input current goes below threshold. A solution
arriving at threshold at time ¢; cannot cross it and will hit threshold again
only later, at time 5, as shown in Figure 3. The area defined by this solution
and the line V = V; cannot be reached by any other solution, since trajec-
tories cannot cross. Therefore, no spike can occur between t; and ¢», which
happens every time the current goes below threshold, and so such time in-
tervals can be removed from the possible spike times. The area defined by
the solutions starting at reset between f1 and f, cannot be reached by any
solution starting before ¢1, since such a solution would spike between ¢; and
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Figure 4: Construction of unreachable time intervals. As in Figure 3, time is on
the horizontal axis and membrane potential on the vertical axis. The color areas
are unreachable by any solution. Thus, the sample solution, shown as a dashed
line, always remains in the white area. The simulation was 500 ms long with a
leaky integrator.

t2. The spike times of these forbidden solutions define a whole sequence of
unreachable spike time intervals. Therefore, every time the input current
goes below threshold, a whole sequence of intervals is removed from the
possible spike times, as shown in Figure 4. We can see that the first time
the current goes below threshold, a red area that no solution can reach is
created near threshold. The solutions starting from the resulting forbidden
time interval are in red. The next time the current goes below threshold
occurs outside the red area and creates a new sequence of yellow stripes.
The third time occurs inside the red area, and the result is displayed in
blue. Thus, a solution starting at time 0 always remains in the white area, as
shown by the dashed black line. One can see that the white area gradually
gets smaller and smaller.

Based on the above considerations, we predict that when the current
oscillates around threshold, the set of possible spike times eventually gets
very narrow, so that spike timing should be reproducible in the long run,
even if the potential is not fixed at reset at stimulus onset. For the general
model given by equation 2.1, ““the current goes below threshold” means that
the vector field points downward at threshold, that is, f(Vy, t) < 0.

In the construction described above, we implicitly assumed that a so-
lution is at reset potential at time ¢ only when it spikes at time ¢, which is
not necessarily so in the general case of equation 2.1. For example, in Fig-
ure 4, one might imagine a solution starting at time 0, going below reset,
and then going up into the first red stripe. This cannot happen if we assume
f(V,, t) > 0for all t. Another sulfficient condition to avoid this problem is to
assume that the model is leaky, as discussed in the appendix. None of these
two conditions is fulfilled by the perfect integrator. Indeed, in this model,
when the vector field points downward at threshold, it also does so at reset.
The numerical simulations show that this model is never reliable.

We briefly describe the numerical construction of the set of reachable
spike times, as illustrated in Figure 4. First, find the first time t; when the
input current goes below threshold. This is the starting point of the first
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forbidden interval. Then run the solution starting from threshold at time #;
and stop when it hits threshold again at time ;. The interval I = [t1, to] is
the first forbidden interval, where no spike can occur. Then run the solution
starting from reset at time ¢ (resp. t2) and stop when it hits threshold at time
t3 (resp. ta), so as to obtain the next forbidden interval [f3, t4]. By repeating
the process, we get a whole sequence of intervals where no spike can occur.
In the remaining set of times, the current goes again below threshold. So
find the first time when it does so after 5, and repeat the procedure. Thus,
when the algorithm ends, we get the remaining set of reachable spike times,
and we shall see that this set eventually gets very small.

Since we chose to display the reliability of model responses for all pa-
rameters of a given family of currents (see Figure 5A) on a single figure,
we computed the set of reachable spike times for each parameter (see Fig-
ures 5B and 5C) and displayed it in a two-dimensional white and black
figure, with time on the horizontal axis and parameter on the vertical axis
(see Figure 5D). Black dots represent reachable spike times.

The explanation above does not apply to the case when the input cur-
rent is always above threshold. However, in our numerical results, re-
sponses seem to be reproducible in both cases, although the required intrin-
sic noise for reproducibility is significantly lower than for currents crossing
the threshold. Our explanation does not rule out the possibility of multiple
stable solutions, but this does not seem to happen in our simulations.

4 Numerical Results

4.1 Periodic Currents. The results regarding periodic stimuli are dis-
played in Figure 6, which illustrates the theoretical results. A leaky integra-
tor is driven by a 20 Hz sinusoidal current (see Figure 6A), whose mean is
a decreasing linear function of the parameter. For parameters p < 0.5, the
current is always above threshold, whereas forp > 0.5, the current oscillates
around threshold. The spike density figure (see Figure 6B) was computed
without noise, with random initial potential for every trial, so that phase
locking appears clearly. Adding dynamical noise results only in blurring
this figure; it has no qualitative influence on the results. The model was run
for 5 s. When phase locking occurs, all the stable solutions can be observed
in the last 250 ms of the runs (see Figure 6B). Phase locking appears for
a given parameter value when the density line for this value consists of
a finite number of black dots only, that is, when the corresponding PSTH
consists of a finite number of isolated peaks. Conversely, there is no phase
locking when the density line consists of gray shades, that is, when the
corresponding PSTH is a smooth distribution. As expected, responses are
always phase-locked for p > 0.5, whereas there are not always for p < 0.5.
Mean firing rate and precision were computed for every parameter value
with noise-free dynamics, as seen in Figure 6C (solid lines), where phase
locking corresponds to plateaus in the firing rate and to drops in precision
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Figure 5: Construction of the set of possible spike times for all parameters of a
given family. (A) Basis function. (B) For a given parameter, we compute the times
when no spike may occur (dark areas are not reachable). (C) This is converted
into a line of white and black rasters, with black ones corresponding to possible
spike times. (D) Collecting all these lines for all parameters and arranging them
vertically, we get a two-dimensional white and black figure of possible spike
times, with time on the horizontal axis and parameter on the vertical axis.

Parameter

measure. Precision was also computed with a small noise on the dynamics
(1 mV.s™Y/2), which results in a smoothed version of the noise-free precision
plot, where only 1:1 phase locking appears clearly (see Figure 6C, dashed
line). There is no trivial relationship between precision and parameter. The
precision is better for p > 0.5, where the model is always phase-locked (the
current oscillates around threshold), than for p < 0.5. The best precision is
obtained for 1:1 phase locking, as observed in Hunter et al. (1998).

We showed the results for three parameter values (see Figures 6D—-6F),
which illustrate the three possible cases of reliability. The simulations were
done with a small dynamical noise.

Case 1: Noise accumulates. For p = 0, responses were not reproducible.
After 5 s, the PSTH was flat, and individual trials were not synchro-
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nized (see Figure 6D). The model behaves in the same way as with a
constant current.

Case 2: Multiple stable solutions. For p = 1, the responses are phase-
locked, as shown in the spike density figure (see Figure 6B). The spike
rate is 13.3 Hz (see Figure 6C), which is two-thirds the input frequency.
Thus, there is 2:3 phase locking; the model neuron spikes twice every
three periods, as shown in the individual trials (see Figure 6F). The
density figure (see Figure 6B) and the PSTH (see Figure 6F) indicate
six spikes every three periods, which means there are three stable
solutions, resulting also in a higher sensitivity to noise (see Figure 6C,
dashed line).

Case 3: One stable solution. For p = 0.5, the spike rate is 20 Hz (see
Figure 6C): the model is 1:1 phase-locked. There is only one stable so-
lution, as seen in the individual trials (see Figure 6E). Thus, responses
are truly reproducible, and precision is very high (see Figure 6D).

In these simulations, case 3 occurs in only about 30% of the parameters
range (the 1:1 phase-locking area).

4.2 Aperiodic Currents.

4.2.1 Noise Does Not Accumulate over Time. In Figure 7, we assessed the
reliability of a noisy leaky integrator in response to a random triangle wave,
whose mean is constant and amplitude varies linearly with the parameter
(the current was constant for p = 0). For all trials, membrane potential was
at rest at stimulus onset; thus, we do not distinguish between cases 2 (sev-
eral stable solutions) and 3 (one stable solution). The input current is always
above threshold for p < 0.5 and oscillates around threshold for p > 0.5.

Figure 6: Facing page. Reliability of a leaky integrator driven by a periodic input
current. The model is a linear leaky integrator. (A) Input current is a 20 Hz sine
wave [(f) = 85 + 40(1 — p) + 30sin(407t) pA, where p is the parameter. The
results are shown from 4.75 s after the onset of the stimulus. (B) The model was
run 2000 times for every parameter value (400 values between 0 and 1), with
initial potential drawn uniformly between threshold and reset, but no noise on
the dynamics, so that phase locking appears clearly. (Adding noise results in
a blurred version of this figure.) The results are displayed as a spike density
figure. (C) Firing rate was computed as a function of the parameter, with no
noise on the dynamics. Precision was computed with no noise on the dynamics
(solid line) and with a noise of 1 mV.s~'/? (dashed line). Phase locking appears
for parameter values below 0.5 as drops in precision. (D-F) For three different
parameter values (0, 0.5, 1), we show the results of 10 trials of the model with
noise on the dynamics (2.5 mV.s~/?) and random initial potential, and also show
the PSTH, computed from 2000 trials. Note the different scales for firing rate in
these graphs.
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Trials were 10 s long. The spike density figure (see Figure 7B) shows that
when the input current oscillated around threshold (p > 0.5), spikes were
synchronized in the long run, and the actual spike times corresponded with
our computational prediction of possible spike times (see Figure 7C). Tight
synchronization can be clearly seen in the 10 individual trials computed for
parameter p = 0.8 in Figure 7E, and the PSTH is very peaked. Thus, noise
did not accumulate (case 2 or 3).

Spiking seems less precise when the input current is always above thresh-
old (p < 0.5), as shown in the spike density figure (see Figure 7B) and the
precision plot (see Figure 7F, solid line). Individual trials for parameter
p = 0.1 (see Figure 7D) show synchronized spikes at the beginning of the
simulation, but not in the last 500 ms of the 10 s runs. This is reflected by
the PSTH as a steady decrease in the height of the peaks during the first 500
ms and as a flat distribution during the last 500 ms. However, we also com-
puted the precision of long runs (200 s) with a lower noise on the dynamics
(0.7 mV.s~Y2) (see Figure 7F, dashed line). This duration was enough for
noise to accumulate in the case of a constant current (p = 0), but it did not
lead to a desynchronization of trials for parameters above 0.2. Thus, it seems
that in contrast with periodic currents, responses to aperiodic currents are
also reproducible (case 2 or 3) when the current is above threshold, as sug-
gested by other studies (Jensen, 1998; Pakdaman & Tanabe, 2001), though
the level of tolerable noise is lower than when the current oscillates around
threshold.

The type of current used (e.g., gaussian instead of triangle wave) did not
alter the results.

4.2.2 There Is Only One Stable Solution. In Figure 8, we assessed the re-
liability of a noisy leaky integrator in response to a random triangle wave,

Figure 7: Facing page. Reliability of a leaky integrator with initial potential at rest.
The model is a linear leaky integrator. (A) Input current is I(¢) = 150 + 150pB(t)
PA, where p is the parameter and B(t) is a triangular wave taking values between
—land 1, with rising and falling time drawn uniformly between 10ms and 50ms.
We show the results for the first and last 500 ms of the 10 s simulations. (B) The
model was run 2000 times for every parameter value (400 values between 0 and
1), with membrane potential initially at rest value, and noise on the dynamics
(3.5 mV.s~/?). The results are displayed as a spike density figure. (C) The set
of possible spike times was computed for every parameter value. (D, E) For
parameter values p = 0.1 (E) and p = 0.8 (F), 10 individual trials were extracted
and displayed, along with the PSTH computed from 2000 trials. (F) Mean firing
rate does not vary much with the parameter. The precision was computed as
a function of the parameter from the last 7.5 s of 10 s’ runs with a noise of
3.5 mV.s™2 on the dynamics (solid line, 400 parameter values), and from the
last 10 s of 200 s’ runs with a noise 0.7 mV.s™"/? (dashed line, 10 parameter
values).
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whose mean is constant and amplitude varies linearly with the parame-
ter. For every trial, membrane potential was drawn at random uniformly
between rest and threshold, so that we could distinguish between cases 2
(several stable solutions) and 3 (one stable solution).

When the input current oscillates around threshold (p > 0.5), we can
see from the spike density figure (see Figure 8B) that spike timing becomes
precise after some time. In the individual trials for parameter p = 0.95
(see Figure 8E), spikes initially occur at different times, depending on the
membrane potential at onset, and eventually they become synchronized
over trials, whatever the initial potential, which corresponds to case 3, and
was predicted by the computation of possible spike times (see Figure 8C).
The results are shown only for the first 500 ms, but the behavior after 9.5 s
is similar to the one shown in Figure 7.

When the input current is always above threshold (p < 0.5), responses
are not reproducible with this magnitude of intrinsic noise, as the results of
individual trials for p = 0.1 show (see Figure 8D). However, we found that
with a lower intrinsic noise, responses were reproducible in the long run
for small parameter values even after 200 s (precision of less than 6 ms for
p > 0.2).

4.2.3 Spike Times Are Stable Under Deterministic Perturbations. Do spike
times in the long run change when the input current is increased? The
spike times of a neuron driven by a constant current are not stable under
deterministic perturbations: if the (constant) ISIis T and a slight decrease
of the current makes it T + &, then the difference between the times of the
nth spike is 18, leading to a desynchronization of the two patterns of spikes
after enough time.

In Figure 9, we simulated a noisy leaky integrator driven by arandom tri-
angle wave, whose mean and amplitude increased linearly with the param-
eter. The current oscillated around threshold for every parameter value. For
every trial, membrane potential was drawn at random uniformly between
rest and threshold. The mean firing rate, computed over 10, increased from
22 to 35 Hz with the parameter (see Figure 9D), but spike times did not vary
significantly with the parameter, even after 750 ms (see Figures 9B and 9C).

Figure 8: Facing page. Reliability of a leaky integrator with random initial po-
tential. The model is a linear leaky integrator. (A) Input current is I(t) = 150 +
150pB(t) pA, where p is the parameter and B(t) is a normalized filtered gaussian
noise with time constant 10 ms. (B) The model was run 2000 times for every
parameter value (400 values between 0 and 1), with initial potential drawn uni-
formly between rest and threshold, and noise on the dynamics (2.5 mV.s™"/2).
The results are displayed for the first 500 ms as a spike density figure. (C) The set
of possible spike times was computed for every parameter value. (D, E) For pa-
rameter values p = 0.1 (D) and p = 0.95 (E), 10 individual trials were extracted
and displayed, along with the PSTH computed from 2000 trials.
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Thus, an increase in firing rate creates additional spikes rather than a shift of
all spikes. Precision was almost constant for all parameter values—around
3 ms (see Figure 9D). Thus, when the input current oscillates around thresh-
old, responses are stable under significantly large deterministic perturba-
tions.

4.2.4 Nonlinear and Nonleaky Models Are Also Reliable. In Figure 10, we
assessed the reliability of a noisy leaky nonlinear model driven by equa-
tion 2.3 (see Figures 10B and 10C) and a noisy nonleaky model described by
equation 2.4 (see Figures 10D and 10E) driven by a gaussian input current
whose mean is constant and amplitude varies linearly with the parameter.
For every trial, membrane potential was drawn at random uniformly be-
tween rest and threshold. Again, responses were reproducible (case 3) when
the input current oscillated around threshold (p > 0.5).

4.2.5 The Perfect Integrator Is Never Reliable. As a counterexample, we
simulated a noisy perfect integrator (Knight, 1972; see Figure 11), driven by
a gaussian current whose mean is constant and amplitude varies linearly
with the parameter. For all trials, membrane potential was at rest at stimu-
lus onset. The hypotheses required for our theoretical explanation are not
fulfilled by this model.

We can see in Figure 11B that whether the input current is above threshold
(p < 0.5) or oscillates around it (p > 0.5), the noise accumulates and leads
to a complete desynchronization of spikes over trials (case 1). Figure 11C
shows that the set of possible spike times does not get smaller over time,
and Figure 11D that the precision is always above 13 ms, which is half the
average ISI.

5 Discussion

We identified two ways in which neuron responses can fail to be repro-
ducible: dynamical noise can accumulate over time and lead to a desyn-
chronization over trials, or several stable responses can exist, depending on
the initial condition. These two cases can occur when the model neuron is
driven by a periodic current, but the former can occur only if the current is
above threshold (Keener et al., 1981). In contrast, we showed that responses
of a general class of spiking neuron models to aperiodic currents oscillating
around threshold are reproducible: spike timing in the long run is stable
under noise and deterministic perturbation and does not depend on the
initial condition. We provided a theoretical explanation based on a geomet-
rical construction that shows that the set of possible spike times becomes
smaller and smaller over time. Our numerical results suggest that responses
to aperiodic currents above threshold are also reproducible, which confirms
other studies (Pakdaman & Tanabe, 2001), but the level of tolerable noise
seems lower in this case.
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Figure 9: Stability of spike timing under deterministic perturbations. The model
is a linear leaky integrator. (A) Input current is I(t) = 112.5 + (75 + 37.5p)B(t) +
37.5p pA, where p is the parameter and B(f) is a triangular wave taking values
between —1 and 1, with rising and falling time drawn uniformly between 10
ms and 50 ms. Thus, the mean input current increases with the parameter from
112.5 pA to 150 pA. (B) The model was run 2000 times for every parameter value
(400 values between 0 and 1), with initial potential drawn uniformly between
rest and threshold and noise on the dynamics (2.5 mV.s~/2). The results are
displayed for the first 750 ms as a spike density figure. (C) The set of possible
spike times was computed for every parameter value. (D) Mean firing rate and
precision were computed from 10 s simulations.
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Figure 10: Reliability of a nonlinear and a nonleaky model. We assessed the
reliability of two models that differ from the linear leaky integrator: a leaky
nonlinear model driven by equation 2.3 (B, C) and a nonleaky model driven
by equation 2.4 (D, E). (A) Input current is I(t) = 150 + 150pB(t) pA for the
leaky nonlinear model and I(t) = 0.5 + 3pB(t) for the nonleaky model (unit is
irrelevant), where p is the parameter and B(t) is a normalized filtered gaussian
noise with time constant 10 ms. (B) The nonlinear leaky model was run 2000
times for every parameter value (400 values between 0 and 1), with initial po-
tential drawn uniformly between rest and threshold, and noise on the dynamics
(2.5 mV.s™"2 for the leaky model). The results are displayed for the first 500 ms
as a spike density figure. (C) The set of possible spike times was computed for
every parameter value. (D, E) The same simulations were done for the nonleaky
model, with noise on the dynamics 0.1 V.s~/2.
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Figure 11: The perfect integrator is not reliable. The model is a perfect integra-
tor driven by equation 2.5. (A) Input current is I(t) = .5 + pB(t) (units are not
significant here), where p is the parameter and B(t) is a a normalized filtered
gaussian noise with time constant 10 ms. We show the results for the first and
last 500 ms of the 10 s simulations. (B) The model was run 2000 times for every
parameter value (400values between 0 and 1), with membrane potential initially
at rest value and noise on the dynamics (0.27 V.s~'/?). The results displayed are
displayed as a spike density figure. (C) The set of possible spike times was com-
puted for every parameter value. (D) Mean firing rate is almost constant, around
40 Hz, while precision is always above 13 ms, which is very high, knowing that
this is about half the mean ISI.
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We showed that for aperiodic currents that cross the threshold, noise
does not accumulate over time. In other words, in this case, the asymptotic
spike time jitter is a function of the level of intrinsic noise that tends to 0
as the noise variance tends to 0, which is not generally so for periodic cur-
rents. This result is not a consequence of particular factors such as the leak,
the amount of fluctuations in the input current, or its frequency spectrum.
However, quantitatively, the ratio of the asymptotic spike time jitter to the
noise variance depends on various characteristics of the input current (and,
more generally, of the differential equation; Hunter et al., 1998; Fellous et
al., 2001; Beierholm et al., 2001; Tiesinga, 2002; Tiesinga et al., 2002b). Such
a relationship is relevant only when responses are reproducible in the way
defined above. In particular, it would be illusory to search for a formula de-
scribing the precision as a function of a parameter of the input in the case of
periodic currents above threshold. Indeed, when varying the parameter, the
model alternates between phase locking, where precision is close to 0, and
structural unstability, where spike timing is imprecise even with an arbitrar-
ily small intrinsic noise (besides being dependent on the initial condition).
However, when the model is phase-locked, the (quantitative) precision de-
pends on dynamical properties such as the Lyapunov exponent and the
distance to the boundary of the Arnold tongue (Tiesinga, 2002).

Appendix: Stability of the Set of Possible Spike Times

A leaky model is described by a one-dimensional differential equation,

i—‘: — (V1) (A1)

where V is the membrane potential, with the spike modeled as follows: when
the potential reaches a threshold V4, it is reset to V. The leak is described
by the following condition on f:

of

% < 0.
This inequality implies that the distance between any two solutions of equa-
tion A.1 (without spike) always decreases and tends to zero—hence, the term
leak.

Since we are interested in the sequence of spike times, it is natural to
introduce the map ¢: R — R that gives the time of the first spike following
a given spike time, that is, ¢(t) is the time when a run starting from reset
potential at time ¢ hits threshold. We shall call this map the spike map. Thus,
the sequence of spike times of a run with first spike at time ¢ is just t, ¢(f),
@*(t), ... The spike map was first introduced in Rescigno et al. (1970) in the
case when the input current is periodic and studied further in Knight (1972)
and Keener et al. (1981).
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One can easily show that for every ¢, f(Vy, ¢(t)) > 0, which means there
can be no spike if the vector field points downward at threshold, that is,
in the case of the linear leaky integrator, if the input current is below the
current threshold. This result is the first cornerstone of the construction of
the set of possible spike times, and it holds also for nonleaky spiking models,
including the perfect integrator. It allows us to remove intervals from the set
of possible spike times, as described in section 3.2. In the construction of this
set, we also remove the image of these intervals by iterates of ¢. However,
this is correct only if ¢ is injective. For leaky models, one can show that
@ is strictly increasing on its range (see Keener et al., 1981, for the case of
periodic currents). This is also true if f(V,, t) > 0 for all ¢, which is the case
of the nonleaky models we simulated.

For periodic currents, that is, in the general case, when f is periodic with
respect to t, the fact that ¢ is strictly increasing on its range means it is a
lift of an orientation-preserving circle map. If ¢ is surjective, that is, if the
current is always above threshold, then ¢ is a lift of a homeomorphism of
the circle. The dynamics of both noninvertible orientation-preserving circle
maps and homeomorphisms of the circle are well known, as we described
in section 3.1.

Our aim is to prove that the set of possible spike times constructed in
section 3.2 is stable under noise and deterministic perturbations. We assume
that the duration of ISIs is bounded, so that there is an M > 0 such that
o) —t < Mforall ¢.

For mathematical convenience, we consider here that a run may hit
threshold without spiking, as long as it does not cross it. Consider runs
defined on R (not only R"), with infinitely many spikes on both R* and
R~. Note R C R the set of spike times of all these runs, that is, the set of
possible spike times constructed from t = —oo. Now consider a perturba-
tion of this system defined in the following way: take € > 0, representing
the amount of perturbation; the spike following a spike at time £, occurs
at time #,,1 such that |t,1 — @(t;)| < €. This accounts for an uncertainty
that may be random or deterministic. Note Re the set of spike times of all
possible perturbed runs for a given € > 0. We shall prove the following
stability theorem:

Theorem 1. For any compact set K such that KN R = @, there is an € > 0 such
that KN Re = 0.

In other words, any compact set, such as an interval, that is not reachable
under the original deterministic dynamical system is not reachable either if
a small perturbation is added on the dynamics. Therefore, adding a small
noise to the dynamics should have a small influence on the set of spike
times. In the same way, a slight change of the vector field should cause a
small perturbation of spike times.
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First, let us formalize the considerations above. Considering that a run
may hit threshold without spiking, as long as it does not cross it, means in
the present case that if the spike map is discontinuous at ¢, then the spike
following a spike at time t may occur at either time ¢(t7) or ¢(t*). Now
choose € > 0 as the level of uncertainty; if there is a spike at time ¢, then
the next spike will occur within distance € of either ¢(t~) or ¢(t*), that is,
the set of possible times for next spike is [p(t7) — €, (™) + €] U [p(t") —
€, p(t*) + €]. Formally, this framework may be expressed in terms of a set-
valued dynamical system. We refer the reader to Aubin and Frankowska
(1990) for more details about set-valued analysis. A sequence (f,) of spike
times agreeing with our considerations is one that satisfies

tni1 € Fe(tn), (A2)

where Fc(t) = [p(t™) —€, (t7) + €] U [p(tt) — €, o(t") + €]. Thus, Fe is a
set-valued map that we write Fe: R | R, as in Aubin and Frankowska
(1990).

We introduce a few definitions from set-valued analysis:

Definition 1.

o The graph of a set-valued map F: X | Y is the set of points (x,y) € X x Y
such that y € F(x).
The inverse of a set-valued map F: X | Y is the set-valued map F~': Y | X
defined by x € F~'(y) if and only if y € F(x).
IfA CR, then

F(A) = U E(@).

teA

IfF: R | Rand G: R | R aretwo set-valued maps, then the composition
GoF: R | Risthe set-valued map defined by G o F(t) = G(F(f)).
The notation F" stands for the n-fold composition Fo Fo --- o F.

The intersection of F: R | Rand G: R | R is the set-valued map F N
G: R | Rdefined by FNG(t) = F(t) N G(f).

Thus, FZ(t) is the set of possible times for the nth spike following a spike
at time £, given an uncertainty €. The set of possible times for the nth spike of
any run is F¢ (R). Consider a run defined on R, with infinitely many spikes
on R™. Every spike of this run must occur within the set F{ (R), for any
integer n. Thus, the spike times are contained in the set

R(Fe) = [\ FA(R).
n>0

Conversely, for any time t € R(Fe), we can find a sequence of spike times
satisfying equation A.2. Thus, R (F¢) is the set of spike times of all such runs.
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In order to prove theorem 1, we need another definition:

Definition 2. Let F: X | Y be a set-valued map. F is said to be compact on
compact sets (CC) if for any sequence x, € X converging to x, any sequence
Yn € F(xy) has a cluster point y € F(x).

Equivalently, F is CC if its graph is closed and it maps bounded sets to bounded
sets.

This is a generalization of continuity for set-valued maps. One may note
that when F is a single-valued map, it is equivalent to continuity. Let us state
a few basic results regarding CC maps:

Proposition 1.
1. IfF: X | YandG: Y | ZisCC, thensois GoF.
2. If F: X | Y, el isafamily of CC set-valued maps, then the intersection

nF.

rel
is also CC.
3. Let
IxX] Y

(A, x) — Fi(x)

a CC set-valued map, and let K C X be a compact set. Then & — F, (K)
is CC.

Theorem 1 follows from the following lemma:

Lemma 1. The set-valued map e € R* +— FZ(R) N Kis CC.

Proof of Theorem 1. It follows from lemma 1 and proposition 1 that the
set-valued map € — R(F¢) NKis CC;hence, its domain is closed, that is, the
set of € such that R(F¢) N K # @ is closed. Therefore, if R(Fg) N K = @, then
for € small enough, R(Fe) N K = @.

Proof of Lemma 1. Note that F/(R) N K = F!(F7"(K)). It follows from
proposition 1 that (€, t) — FZ(t) is CC. Therefore, it is sufficient to prove
that (€, t) — FZ"(t) is CC, and since its graph is closed, we need to prove
only that it maps bounded sets to bounded sets. That is, we must prove that
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for any A > 0 and any compact interval I, the set

"0 = F"()

e<A
is bounded. Since the function t — ¢(t) — t is bounded, we have

lim ¢"(t) = —o0.
t——00

Therefore, ¢" maps an unbounded set of R~ to an unbounded set. Hence,
F," (I) must be bounded.
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