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Abstract

We present a new way to model the response of an electrodeitgeated current. The
electrode is represented by an unknown complex linear itircliaracterized by a kernel
which we determine by injecting a noisy current. We show hotkimulations and ex-
periments that, when applied to a full recording setup (ditlg acquisition board and
amplifier), the method captures not only the charactesisiidhe electrode, but also those
of all the devices between the computer and the tip of tharelde, including filters and
the capacitance neutralization circuit on the amplifiem@ations show that the method
allows correct predictions of the response of complex edeet models. Finally, we suc-
cessfully apply the technique to challenging intracetiu&ording situations in which the
voltage across the electrode during injection needs to beaied from the recording, in
particular conductance injection with the dynamic clam@t@col. We show in numerical
simulations and confirm with experiments that the methodopmis well in cases when
both bridge recording and recording in discontinuous m@eQq) exhibit artefacts. (This
work was supported by : CNRS, INRIA, European CommissionGEAS, FP6-2004-IST-
FET), Action Concertée Incitative (NIC0005).)

1 Principle

Modelling the electrode

When recording intracellularly with a single electrode amécting current at the
same time, the recorded potential is

Vr :Vm+Ue
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whereVy, is the membrane potential (which is the variable we areésted in) and
Ue is the voltage across the electrode. As a first approximatienelectrode acts
as a resistancéle =~ Rel, whereRg is the electrode resistance ani the injected
current. Thus a first estimation, known lasdge compensatigns Vi ~ V; — Ral.
However, this is too crude an approximation because théretbehas a non-zero
charge time and is better modelled by a RC circuit (resigancapacitance). Am-
plifiers include a capacitance neutralization circuit whamounts to inserting a
negative capacitance in the circuit [8]. Again, this modebio simple because there
is always a residual capacitance, which appears as cagecansients in recorded
responses to pulses. These transients can cause seriblessan some situations
such as dynamic clamp injection of conductances (injeatfocurrent of the form
I(t) =g(t)(E—Vm(t)) [6,7]), because transients are injected back and can destab
lize the system.

Therefore we defined a more complex model of an electrodes$ynaing that the

electrode can be seen as an arbitrarily complex circuit eit@nces and capaci-
tances, which can be represented by a linear time-invdilgent i.e., the response
of the electrode to a curreht) is expressed as a convolution:

+o0

Ue(t) = (Kex1)(t) = / Ke(s)l (t—s)ds

0

whereKg(-) is named theelectrode kernelThe technique consists in identifying
the electrode kernel by observing the response of the etitio a known noisy

current. In practice, the electrode kernel can only be eggchwhen the electrode
is impaled into the neuron (because electrode propertesgehafter impalement).
In this case, we first remove the membrane kernel from thenfietisured kernel

(see below).

Once the electrode kernel has been estimated, we use thessipr above to es-
timate the voltage across the electrode during injectich subtract it from the
recordingV, (t). We named this technigukctive Electrode CompensatigAEC

[2]).
Intracellular estimation of the electrode model

In the digital domain, the formula reads:

+o0
Ue(n) = Y Ke(k)I(n—k
(n) kZO (K)I(n—k)



In practice, the electrode kerniél vanishes after a short time (a few ms), so that
the sum is finite. 1fUg(-) is measured and(-) is known, it is possible to derive
the optimal kerneKg(+) in a least square sense (in the motlkl,seen as a vector,
depends linearly oK¢). We use sampled white noise as a probe sigfmglbecause
using a current with minimum autocorrelation enhances kbetr@de contribution

in the recording relatively to the membrane contributianttee electrode response
is at least one order of magnitude faster than the membrapemse.

One difficulty in measuring the electrode kernel intradallly is that we do not
observe only the electrode response but also the membrapense. With small
white noise, the membrane response is mostly linear, angtoeded potential can
be expressed as:

Vi =Vim+Ue

whereK, is the membrane kernel angis the current actually entering the cell.
We assume thalt is a filtered version of, with the following expressionte =
(Ke/ [Ke) 1. Thus we hav®, =Vp+ K x| with

Ke
K=Kypy*—+K
m*fKe+ e

whereK is the full kernel. To extract the electrode kerik&l we measure the full
kernelK, estimateK, from fitting an exponential function to the tail &f (this is
possible becaud€,, andKe have different time scales), and solve the equation above
(a direct algorithm follows from expressing the equatiothvihe Z-transform). In
fact, fitting an exponential function to the tail Kfdoes not give a correct estimate
of the membrane resistan&(= [ Kp), which leaves a residual slow exponential
tail in our estimation oKe. The final step in our algorithm is to adjuRtso that the
tail of Ke is minimized (ideally, it would vanish at the correct valdeR). Analyti-
cal calculations show that, with this method for estimatimgyelectrode kernel, the
relative error in estimating the membrane depolarizafiong constant injected cur-
rent) of a passive neuron with a simple electrode (resistancapacitance) equals
the ratio of the time constants/t, instead of 2¢/1, for the simple additive model
K = (R/Tm) exp(—t/tm) + Ke (as used e.g. in [1]).

It is important to note that cancellation of the membrane&kis done only at es-
timation time, not during subsequent recordings. Theeefitranges in membrane
properties are not a matter of concern for the method. Clsaingsectrode proper-
ties are, however, a matter of concern, in the same way ashathtandard bridge
compensation method. To ensure proper operation of theaniethe estimation
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Fig. 1. Electrode kernels.
A. Electrode kernel estimated in a cortical neuron in vitithvwo settings of the amplifier
input low-pass filter: 10 kHz (solid) and®kHz (dashed). B. Electrode kernels for three
levels of capacitance neutralization (highest level issibla curve). Inset: electrode kernel
close to the “buzz” (maximum level of capacitance neutedion). C. Kernel of the DCC
mode (after adjustment). D. Electrode kernel of a simulatuplex electrode consisting
of 4 resistances and 4 capacitancBs £ 50 MQ, C; = 4 pF,R, = 30 MQ, C, = 0.3 pF,
R3; =25 MQ, C3 =2 pF,Ry =12 MQ, C4 = 4 pF).

procedure must be run again from time to time. It is not a miajconvenience be-
cause the procedure is automatic and fast (a few secondsglseour experiments
indicate that modifications in electrode properties ocaunlarupt changes rather
than as a continuous drift in the kernel.

2 Electrodekernels

We measured electrode kernels while recording from cdniearonsn vitro, with
a program running in real time (10 kHz) on a computer connkettighe amplifier
(using a modified version of Neuron [5]). Figure 1 shows tgbalectrode kernels,
which consists of three phases: first a short period in whielkernel is zero, cor-
responding to the feedback delay of the system, second adasj phase due to
acquisition filters, third the electrode decay.

We found that the electrode kernel measured by this methdddas, in addition
to the characteristics of the electrode per se, all the dilpeesent in the amplifier



and the acquisition board, acquisition delays and compiemnsarcuits. Figure 1.A
shows electrode kernels measured for various settingsedbti+-pass filter of the
amplifier; Figure 1.B shows kernels for various settingshef ¢apacitance neutral-
ization circuit. At high neutralization level (typical oégings for DCC recordings),
one can observe a small damped oscillation (not shown),lwikidue to the feed-
back nature of the analogical neutralization circuit inaneplifier. Very close to the
onset of unstable oscillations (when there is too much dtgra neutralization),
the electrode kernel captures high-frequency oscillat{gigure 1.B, inset).

The method can also be used in the discontinuous currempclaode (DCC),
which is the standard alternative recording mode when bratgnpensation cannot
be used [4]: its principle is to alternatively inject andastwith a frequency set by
the electrode time constant. Ideally, the electrode kewoeld be null (the electrode
contribution is completely cancelled by the DCC protocli)practice, the estima-
tion technique often captures a residual kernel which s the imperfection of
the DCC adjustment (Figure 1.C).

We were able to reproduce these effects in numerical simuokatFigure 1.D shows
a kernel obtained in simulations of a complex electrode isting of four resis-
tances and four capacitances; the setup also included amsaioo delay, which
appears as two null steps in the kernel, as in the experiments

3 Predicting the response of complex electrodes and compensating intracel-
lular recordings

All the results described here were obtained in numerigaukitions (in which
the true values of electrode parameters and membrane bt known), then
confirmed experimentalliy vitro.

Predicting electrode responses to noisy currents

To show that the method was able to accurately predict thre of an electrode
to an injected current, we simulated electrode models stingi of various num-

bers of resistances and capacitances. The technique dlisie estimate electrode
kernels and predict the response to noisy currents witht guauracy. Figure 2.A

shows the response of an electrode consisting of two resisaand two capaci-
tances to white noise current sampled at 10 kHz, togethértive estimation using
the electrode kernel. The prediction is almost perfect.nTive tested the method
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Fig. 2. Prediction of electrode responses (numerical sitiauis).
A. Response of an electrode to white noise injection andigiied with the estimated ker-
nel (the curves are perfectly superimposed). The electcodgbines two resistances and
two capacitances; =50 MQ, C; = 2 pF,R, = 30 MQ, C, = 1.7 pF). Note the wide scale
for electrode voltagéle. B. Electrode kernel estimated in bath and after impalenmata
neuron are almost identical in simulations (solid curvé)e Hashed curve shows the dif-
ference between the two curves multiplied by 10 (cumulatear és 1 MQ). C. Response
of the same electrode to white noise injection when impatéa & neuron (solid) and pre-
diction with the estimated kernel (dashed). Curves arersupesed except during spikes
(arrow). D. Response and prediction for a complex electomisisting of 4 resistances and
4 capacitances (as in Fig. 1.D).

when the electrode models were connected to Hodgkin-Huyjsy models of cor-

tical neurons (model and parameters described in [3]).rEi@uB shows that the
electrode kernels extracted by the method differed onghslly from the electrode

kernels estimated when the electrodes were isolated. Asi# rthe response of the
electrode could still be estimated with high accuracy ewerdst varying currents
(Figure 2.C, response to sampled white noise), except glspikes (arrow in Fig.

2.C). Indeed, the method only estimates the voltage achessléctrode which re-
sults from current injection, but during spikes a large entiflows from the neuron
through the electrode, and this contribution cannot benedéd. This is not specific
to our method, and it would also be obtained when using twctreldes, one for

current injection and one for membrane potential recordlimng main effect is that
spikes are filtered by the electrode (see Figure 3).

We also simulated more complex recording setups includiagiaition delays and
more complex electrodes, and found that the method wasbtdlto predict elec-
trode responses in the same way (Figure 2.D).



Compensating current-clamp recordings

We used these kernels to estimate the voltage across theodiecluring current
injections and subtract it from recordings in real time, sd@obtain an estimate
of the real membrane potential. We refer to this compensaédohnique as AEC
(Active Electrode Compensation). First, we injected whitése sampled at 10 kHz
in a model of a full recording setup (neuron + electrode + diiep), using AEC to
subtract the voltage across the electrode from the reaprdime traces showed ex-
cellent agreement with the real intracellular membranemqa! (Figure 3.A). Note
that this is a challenging situation because the electrottage to be subtracted is
fastand can reach 500 mV (Fig. 2.A). Such a noise could natjbeted using either
bridge compensation (the response contains too many érge¥ior discontinuous
current clamp (the sampling frequency is too low). As notezljpusly, AEC (as
bridge and DCC) cannot correct the filtering of spikes dueutoent flowing from
the neuron through the electrode. Thus spikes appear sraalllewider than they
really are (Figure 3.B), and this effect is all the more prammed that the elec-
trode is slow (Fig. 3.C-D). This effect is routinely obsavexperimentally when
recording spikes with different levels of capacitance radiztation. Apart from this
effect, AEC correctly compensates the electrode contabutven with complex
non-exponential electrodes (Figure 3.C). In extreme 8doa in which the elec-
trode is very slow (Figure 3.D, note the small spike), AECas$ &s satisfying but
remains usable (no capacitive transients).

Compensating dynamic clamp recordings

Then we injected square waves of conductances (in dynaememlin our model
(see Fig. 3.E). The injected current was a sum of alternaiuitatory and in-
hibitory conductances:

I (t) = aH (sin(21tft))(Ee — Vm(t)) + aH (sin(2rtft)) (Ei — Vin(t))

wherea is the maximum conductandd,is the Heavyside functiorH(u) = 1 when
u> 0, otherwiseH (u) = 0), f is the frequencyke is the excitatory reversal poten-
tial, E; is the inhibitory reversal potential aM{t) is the membrane potential. Thus
the injected current depends in real time on the measurecdnagm® potential. This
is a challenging situation for electrode compensationnighes because errors are
amplified by the feedback. In particular, at high freques@ed conductances, sim-
ulated bridge recordings were unstable and diverged (qi@wscillations), even
though they were ideally adjusted, because the residuattap transients amplify
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Fig. 3. Recording with AEC
A-E are numerical simulations with a cortical neuron mo#agin vitro. A. Recording with
AEC (solid) vs. real membrane potential (dashed) in the seonéitions as for Fig. 2.A.
B. Zoom on a spike. C. Id. with the complex electrode of Fifp.D. Id. with a very slow
electrode R; = 50 MQ, C; = 18 pF,R, = 30 MQ, C, = 3.3 pF). E. Response to a square
wave of conductances (solid) vs. ideal response (dashe®d€ and AEC. F. Response of
a neuron to white noise current recorded with AEC (black) lamdige compensation (grey).

through the feedback loop of the dynamic clamp. Fig. 3.E shtnat AEC was able
to estimate the membrane potential correctly, while at Hirfghjuencies and con-

ductances, DCC recordings had large voltage errors and@wgmoral resolution (a
model of the DCC was also included in the simulations).

All these numerical results were confirmed experimentallyitro (see Fig. 3.F).



4 Conclusion

The AEC technique, based on a non-parametric linear modgleoélectrode, al-
lows faithful recordings in continuous mode (and therefeith unlimited sampling
frequency) in situations in which bridge compensation caibe used, including in-
jection of fast currents and conductances. It is also autionthus avoiding impre-
cisions due to subjective manual settings. Future direstinclude using AEC for
in vivo recordings (particulary with sharp electrodes) and fordimgle-electrode
voltage-clamp.
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