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Abstract

We present a new way to model the response of an electrode to aninjected current. The
electrode is represented by an unknown complex linear circuit, characterized by a kernel
which we determine by injecting a noisy current. We show bothin simulations and ex-
periments that, when applied to a full recording setup (including acquisition board and
amplifier), the method captures not only the characteristics of the electrode, but also those
of all the devices between the computer and the tip of the electrode, including filters and
the capacitance neutralization circuit on the amplifier. Simulations show that the method
allows correct predictions of the response of complex electrode models. Finally, we suc-
cessfully apply the technique to challenging intracellular recording situations in which the
voltage across the electrode during injection needs to be subtracted from the recording, in
particular conductance injection with the dynamic clamp protocol. We show in numerical
simulations and confirm with experiments that the method performs well in cases when
both bridge recording and recording in discontinuous mode (DCC) exhibit artefacts. (This
work was supported by : CNRS, INRIA, European Commission (FACETS, FP6-2004-IST-
FET), Action Concertée Incitative (NIC0005).)

1 Principle

Modelling the electrode

When recording intracellularly with a single electrode andinjecting current at the
same time, the recorded potential is

Vr = Vm+Ue
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whereVm is the membrane potential (which is the variable we are interested in) and
Ue is the voltage across the electrode. As a first approximation, the electrode acts
as a resistance:Ue ≈ ReI , whereRe is the electrode resistance andI is the injected
current. Thus a first estimation, known asbridge compensation, is Vm ≈ Vr −ReI .
However, this is too crude an approximation because the electrode has a non-zero
charge time and is better modelled by a RC circuit (resistance + capacitance). Am-
plifiers include a capacitance neutralization circuit which amounts to inserting a
negative capacitance in the circuit [8]. Again, this model is too simple because there
is always a residual capacitance, which appears as capacitive transients in recorded
responses to pulses. These transients can cause serious problems in some situations
such as dynamic clamp injection of conductances (injectionof current of the form
I(t) = g(t)(E−Vm(t)) [6,7]), because transients are injected back and can destabi-
lize the system.

Therefore we defined a more complex model of an electrode, by assuming that the
electrode can be seen as an arbitrarily complex circuit of resistances and capaci-
tances, which can be represented by a linear time-invariantfilter, i.e., the response
of the electrode to a currentI(t) is expressed as a convolution:

Ue(t) = (Ke∗ I)(t) =

+∞
Z

0

Ke(s)I(t−s)ds

whereKe(·) is named theelectrode kernel. The technique consists in identifying
the electrode kernel by observing the response of the electrode to a known noisy
current. In practice, the electrode kernel can only be estimated when the electrode
is impaled into the neuron (because electrode properties change after impalement).
In this case, we first remove the membrane kernel from the fullmeasured kernel
(see below).

Once the electrode kernel has been estimated, we use the expression above to es-
timate the voltage across the electrode during injection and subtract it from the
recordingVr(t). We named this techniqueActive Electrode Compensation(AEC
[2]).

Intracellular estimation of the electrode model

In the digital domain, the formula reads:

Ue(n) =
+∞

∑
k=0

Ke(k)I(n−k)
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In practice, the electrode kernelKe vanishes after a short time (a few ms), so that
the sum is finite. IfUe(·) is measured andI(·) is known, it is possible to derive
the optimal kernelKe(·) in a least square sense (in the model,Ue, seen as a vector,
depends linearly onKe). We use sampled white noise as a probe signalI(n) because
using a current with minimum autocorrelation enhances the electrode contribution
in the recording relatively to the membrane contribution, as the electrode response
is at least one order of magnitude faster than the membrane response.

One difficulty in measuring the electrode kernel intracellularly is that we do not
observe only the electrode response but also the membrane response. With small
white noise, the membrane response is mostly linear, and therecorded potential can
be expressed as:

Vr =Vm+Ue

=V0 +Km∗ Ie+Ke∗ I

whereKm is the membrane kernel andIe is the current actually entering the cell.
We assume thatIe is a filtered version ofI , with the following expression:Ie =
(Ke/

R

Ke)∗ I . Thus we haveVr = V0+K ∗ I with

K = Km∗
Ke

R

Ke
+Ke

whereK is the full kernel. To extract the electrode kernelKe, we measure the full
kernelK, estimateKm from fitting an exponential function to the tail ofK (this is
possible becauseKm andKe have different time scales), and solve the equation above
(a direct algorithm follows from expressing the equation with the Z-transform). In
fact, fitting an exponential function to the tail ofK does not give a correct estimate
of the membrane resistanceR (=

R

Km), which leaves a residual slow exponential
tail in our estimation ofKe. The final step in our algorithm is to adjustR so that the
tail of Ke is minimized (ideally, it would vanish at the correct value of R). Analyti-
cal calculations show that, with this method for estimatingthe electrode kernel, the
relative error in estimating the membrane depolarization (for a constant injected cur-
rent) of a passive neuron with a simple electrode (resistance + capacitance) equals
the ratio of the time constantsτe/τm, instead of 2τe/τm for the simple additive model
K = (R/τm)exp(−t/τm)+Ke (as used e.g. in [1]).

It is important to note that cancellation of the membrane kernel is done only at es-
timation time, not during subsequent recordings. Therefore changes in membrane
properties are not a matter of concern for the method. Changes in electrode proper-
ties are, however, a matter of concern, in the same way as withthe standard bridge
compensation method. To ensure proper operation of the method, the estimation
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Fig. 1. Electrode kernels.
A. Electrode kernel estimated in a cortical neuron in vitro with two settings of the amplifier
input low-pass filter: 10 kHz (solid) and 0.3 kHz (dashed). B. Electrode kernels for three
levels of capacitance neutralization (highest level is thesolid curve). Inset: electrode kernel
close to the “buzz” (maximum level of capacitance neutralization). C. Kernel of the DCC
mode (after adjustment). D. Electrode kernel of a simulatedcomplex electrode consisting
of 4 resistances and 4 capacitances (R1 = 50 MΩ, C1 = 4 pF,R2 = 30 MΩ, C2 = 0.3 pF,
R3 = 25 MΩ, C3 = 2 pF,R4 = 12 MΩ, C4 = 4 pF).

procedure must be run again from time to time. It is not a majorinconvenience be-
cause the procedure is automatic and fast (a few seconds); besides, our experiments
indicate that modifications in electrode properties occur as abrupt changes rather
than as a continuous drift in the kernel.

2 Electrode kernels

We measured electrode kernels while recording from cortical neuronsin vitro, with
a program running in real time (10 kHz) on a computer connected to the amplifier
(using a modified version of Neuron [5]). Figure 1 shows typical electrode kernels,
which consists of three phases: first a short period in which the kernel is zero, cor-
responding to the feedback delay of the system, second a fastrising phase due to
acquisition filters, third the electrode decay.

We found that the electrode kernel measured by this method includes, in addition
to the characteristics of the electrode per se, all the filters present in the amplifier
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and the acquisition board, acquisition delays and compensation circuits. Figure 1.A
shows electrode kernels measured for various settings of the low-pass filter of the
amplifier; Figure 1.B shows kernels for various settings of the capacitance neutral-
ization circuit. At high neutralization level (typical of settings for DCC recordings),
one can observe a small damped oscillation (not shown), which is due to the feed-
back nature of the analogical neutralization circuit in theamplifier. Very close to the
onset of unstable oscillations (when there is too much capacitance neutralization),
the electrode kernel captures high-frequency oscillations (Figure 1.B, inset).

The method can also be used in the discontinuous current-clamp mode (DCC),
which is the standard alternative recording mode when bridge compensation cannot
be used [4]: its principle is to alternatively inject and record with a frequency set by
the electrode time constant. Ideally, the electrode kernelwould be null (the electrode
contribution is completely cancelled by the DCC protocol).In practice, the estima-
tion technique often captures a residual kernel which represents the imperfection of
the DCC adjustment (Figure 1.C).

We were able to reproduce these effects in numerical simulations. Figure 1.D shows
a kernel obtained in simulations of a complex electrode consisting of four resis-
tances and four capacitances; the setup also included an acquisition delay, which
appears as two null steps in the kernel, as in the experiments.

3 Predicting the response of complex electrodes and compensating intracel-
lular recordings

All the results described here were obtained in numerical simulations (in which
the true values of electrode parameters and membrane potential are known), then
confirmed experimentallyin vitro.

Predicting electrode responses to noisy currents

To show that the method was able to accurately predict the response of an electrode
to an injected current, we simulated electrode models consisting of various num-
bers of resistances and capacitances. The technique allowed us to estimate electrode
kernels and predict the response to noisy currents with great accuracy. Figure 2.A
shows the response of an electrode consisting of two resistances and two capaci-
tances to white noise current sampled at 10 kHz, together with the estimation using
the electrode kernel. The prediction is almost perfect. Then we tested the method
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Fig. 2. Prediction of electrode responses (numerical simulations).
A. Response of an electrode to white noise injection and prediction with the estimated ker-
nel (the curves are perfectly superimposed). The electrodecombines two resistances and
two capacitances (R1 = 50 MΩ, C1 = 2 pF,R2 = 30 MΩ, C2 = 1.7 pF). Note the wide scale
for electrode voltageUe. B. Electrode kernel estimated in bath and after impalementinto a
neuron are almost identical in simulations (solid curve). The dashed curve shows the dif-
ference between the two curves multiplied by 10 (cumulated error is 1 MΩ). C. Response
of the same electrode to white noise injection when impaled into a neuron (solid) and pre-
diction with the estimated kernel (dashed). Curves are superimposed except during spikes
(arrow). D. Response and prediction for a complex electrodeconsisting of 4 resistances and
4 capacitances (as in Fig. 1.D).

when the electrode models were connected to Hodgkin-Huxleytype models of cor-
tical neurons (model and parameters described in [3]). Figure 2.B shows that the
electrode kernels extracted by the method differed only slightly from the electrode
kernels estimated when the electrodes were isolated. As a result, the response of the
electrode could still be estimated with high accuracy even for fast varying currents
(Figure 2.C, response to sampled white noise), except during spikes (arrow in Fig.
2.C). Indeed, the method only estimates the voltage across the electrode which re-
sults from current injection, but during spikes a large current flows from the neuron
through the electrode, and this contribution cannot be estimated. This is not specific
to our method, and it would also be obtained when using two electrodes, one for
current injection and one for membrane potential recording. The main effect is that
spikes are filtered by the electrode (see Figure 3).

We also simulated more complex recording setups including acquisition delays and
more complex electrodes, and found that the method was stillable to predict elec-
trode responses in the same way (Figure 2.D).
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Compensating current-clamp recordings

We used these kernels to estimate the voltage across the electrode during current
injections and subtract it from recordings in real time, so as to obtain an estimate
of the real membrane potential. We refer to this compensation technique as AEC
(Active Electrode Compensation). First, we injected whitenoise sampled at 10 kHz
in a model of a full recording setup (neuron + electrode + amplifier), using AEC to
subtract the voltage across the electrode from the recording. The traces showed ex-
cellent agreement with the real intracellular membrane potential (Figure 3.A). Note
that this is a challenging situation because the electrode voltage to be subtracted is
fast and can reach 500 mV (Fig. 2.A). Such a noise could not be injected using either
bridge compensation (the response contains too many transients) or discontinuous
current clamp (the sampling frequency is too low). As noted previously, AEC (as
bridge and DCC) cannot correct the filtering of spikes due to current flowing from
the neuron through the electrode. Thus spikes appear smaller and wider than they
really are (Figure 3.B), and this effect is all the more pronounced that the elec-
trode is slow (Fig. 3.C-D). This effect is routinely observed experimentally when
recording spikes with different levels of capacitance neutralization. Apart from this
effect, AEC correctly compensates the electrode contribution even with complex
non-exponential electrodes (Figure 3.C). In extreme situations in which the elec-
trode is very slow (Figure 3.D, note the small spike), AEC is not as satisfying but
remains usable (no capacitive transients).

Compensating dynamic clamp recordings

Then we injected square waves of conductances (in dynamic clamp) in our model
(see Fig. 3.E). The injected current was a sum of alternatingexcitatory and in-
hibitory conductances:

I(t) = αH(sin(2π f t))(Ee−Vm(t))+αH(sin(2π f t))(Ei −Vm(t))

whereα is the maximum conductance,H is the Heavyside function (H(u) = 1 when
u≥ 0, otherwiseH(u) = 0), f is the frequency,Ee is the excitatory reversal poten-
tial, Ei is the inhibitory reversal potential andV(t) is the membrane potential. Thus
the injected current depends in real time on the measured membrane potential. This
is a challenging situation for electrode compensation techniques because errors are
amplified by the feedback. In particular, at high frequencies and conductances, sim-
ulated bridge recordings were unstable and diverged (growing oscillations), even
though they were ideally adjusted, because the residual capactive transients amplify
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Fig. 3. Recording with AEC
A-E are numerical simulations with a cortical neuron model,F is in vitro. A. Recording with
AEC (solid) vs. real membrane potential (dashed) in the sameconditions as for Fig. 2.A.
B. Zoom on a spike. C. Id. with the complex electrode of Fig. 2.D. D. Id. with a very slow
electrode (R1 = 50 MΩ, C1 = 18 pF,R2 = 30 MΩ, C2 = 3.3 pF). E. Response to a square
wave of conductances (solid) vs. ideal response (dashed) for DCC and AEC. F. Response of
a neuron to white noise current recorded with AEC (black) andbridge compensation (grey).

through the feedback loop of the dynamic clamp. Fig. 3.E shows that AEC was able
to estimate the membrane potential correctly, while at highfrequencies and con-
ductances, DCC recordings had large voltage errors and poortemporal resolution (a
model of the DCC was also included in the simulations).

All these numerical results were confirmed experimentallyin vitro (see Fig. 3.F).
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4 Conclusion

The AEC technique, based on a non-parametric linear model ofthe electrode, al-
lows faithful recordings in continuous mode (and thereforewith unlimited sampling
frequency) in situations in which bridge compensation cannot be used, including in-
jection of fast currents and conductances. It is also automatic, thus avoiding impre-
cisions due to subjective manual settings. Future directions include using AEC for
in vivo recordings (particulary with sharp electrodes) and for thesingle-electrode
voltage-clamp.
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