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ABSTRACT

The Active Electrode Compensation (AEC) consists of an online correction of the recorded
membrane potential based on a computational model of the electrode. This technique may be
particularly useful for situations where high-frequency components (such as noise) must be
injected. This is particularly important for dynamic-clamp applications because of the
real-time feedback between injected current and recorded voltage, since any artifact is amplified
and may cause instabilities. We show here that such problems are greatly limited by the AEC,
and this technique enables dynamic-clamp injection at high feedback frequencies (>10 KHz) and
in demanding conditions. We illustrate applications such as injection of conductance noise in
vivo and in vitro.

1. INTRODUCTION

1.1. DYNAMIC CLAMP WITH A SINGLE HIGH-RESISTANCE ELECTRODE

The dynamic-clamp, or “conductance injection” (Robinson and Kawai, 1993; Sharp et al,, 1993;
Prinz et al., 2004), consists of injecting a current I(t) that depends on the value of the membrane
potential V(t), according to Ohm's law I(t) = g(t) [V(t)-E], where g(t) is the conductance injected
and E is the reversal potential. In many situations, especially in vivo, current injection and
voltage measurement are performed with the same electrode. In vivo, this electrode is either a
high resistance sharp microelectrode with low capacitance (Steriade et al., 2001; Wilent and
Contreras, 2005a; Crochet et al., 2006; Higley and Contreras, 2007; Haider et al,, 2007; Paz et al,,
2007) that are also used in some adult in vitro preparations (Thomson and Deuchars, 1997; Shu
et al.,, 2003), or a patch electrode that can display a whole range of resistances and capacitances
depending on the age and species of the animal (Margrie et al. 2002, Borg-Graham et al., 1998,
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Monier et al. 2008, Pei et al. 1991, Hirsch et al. 1998, Anderson et al. 2000, Wehr and Zador,
2003, Mokeichev et al., 2007). The problem inherent to such single-electrode recordings is that
the injected current biases the measurement because of the voltage drop through the electrode.

In a typical current-clamp recording with a single electrode, where current is simultaneously
injected, the recorded potential is V=V +U,, where v is the membrane potential (which is the

variable we are interested in) and U,is the voltage across the electrode. As a first approximation,
the electrode acts as a resistance: UezReI, where Re is the electrode resistance and I is the
injected current. Thus a first estimation, known as bridge compensation, is szVr—Rel. However,

this is too crude an approximation because the electrode has a non-zero charge time and is
better modeled by a RC circuit (resistance + capacitance). Amplifiers include a capacitance
neutralization circuit which amounts to inserting a negative capacitance in the circuit (Thomas,
1977). Again, this model is too simple because there is always a residual capacitance, which
appears as capacitive transients in recorded responses to current pulses (Fig. 1a). In dynamic
clamp, the artifacts are injected back and can be amplified by the control loop, which leads to
oscillatory instabilities (Fig. 1b; see Appendix B for a mathematical analysis). An option is to use
a discontinuous mode (Fig. 1c), alternatively injecting current and recording the V, (Brennecke
and Lindemann, 1971, 1974a, 1974b; Finkel and Redman, 1984) with a frequency set by the
electrode time constant (typically 1.5-3 kHz with sharp electrodes in our experiments in cortical
neurons in vitro and in vivo). Unfortunately, the alternation method is valid only when the
electrode response is at least two orders of magnitude faster than the recorded phenomena
(Finkel and Redman, 1984), because the membrane response must be quasi-linear in the
sampling interval. Moreover, recordings in discontinuous modes are very noisy and sampling
frequency is limited, which makes the precise recording of fast phenomena like spikes
impossible (Fig. 1d).

We developed a method named Active Electrode Compensation (AEC) based on a digital model
of the electrode seen as an unknown linear filter, which allows sampling the V, during current
injection with a frequency only limited by the speed of the computer simulating the electrode
model (Brette et al, 2007, 2008). In this chapter, we review this method and its application
to dynamic-clamp experiments.

1.2. ACTIVE ELECTRODE COMPENSATION

The AEC method consists in using a more complex model of an electrode, by assuming that the
electrode can be seen as an arbitrarily complex circuit of resistances and capacitances, which
can be represented by a linear time-invariant filter, i.e., the response of the electrode to a current
I(t) is expressed as a convolution:

UL = (K, * 1)) = [KL (9], (t-9)ds

where Ke(-) is named the electrode kernel (Fig. 1e,f). Thus the voltage across the electrode

depends linearly on all past values of the injected current. This formulation encompasses any
linear model, e.g. a circuit with a resistor and a capacitor (the kernel K. is then an exponential
function). The technique consists in identifying the electrode kernel by observing the response
of the electrode to a known noisy current. In practice, the electrode kernel can only be estimated
when the electrode impales the neuron (because electrode properties change after impalement).
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In this case, we first remove the membrane kernel from the full measured kernel (see next
section).

Once the electrode kernel has been estimated, we use the expression above to estimate the
voltage across the electrode during current injection and subtract it from the recording Vr(t). In

practice, the recordings are digitized and the formula reads:

U.(M =3 K.(p).(n- p)

and the digital convolution is performed in real time by a computer.

We first describe the implementation of AEC in detail (section 2), then we examine the influence
of various aspects on AEC recordings, such as time constants and electrode nonlinearities
(section 3) and finally we show some practical examples of recordings in vitro and in vivo
(section 4). The appendixes contain more details about typical errors using AEC (A) and dynamic
clamp instabilities with standard bridge compensation (B). Sample code is available at the
following URL: http://www.di.ens.fr/~brette/HRCORTEX/AEC/.

2. THEORY AND IMPLEMENTATION

The algorithm to estimate the electrode kernel (Fig. 2) consists in 1) finding the kernel of the full
system neuron + electrode (+ amplifier) from the voltage response to a known input current,
and 2) extracting the electrode kernel form the full kernel (see Fig. 2). Indeed, the electrode
kernel cannot be measured in isolation because the electrode properties change after it
penetrates the membrane. Once the electrode kernel is measured, the electrode response can be
calculated online by convolving the kernel with the injected current; then it is subtracted from
the voltage recording to obtain the membrane potential.

2.1. FINDING THE KERNEL

We assume that the neuron and the electrode respond linearly to the injected currents we use.
We will discuss this hypothesis later (sections 3.4 and 3.5). Then the recorded potential V in
response to an input current / is the linear convolution:

+o0
V(t)=Vo+ (K +I)(t) = Vi + f K(s)I(t — s)ds
0

where K is the impulse response of the system (neuron + electrode), also named the kernel, and
Vs the resting potential. In the digital domain, the formula reads

“+0o0

Vi=V0+> KL,
0

Note that both the continuous and the discrete formulas express the linearity of the response
and V(tn):Vn, but the continuous and discrete kernels are generally not identical (they only

agree in the limit of small sampling steps). In fact, the kernel contains not only the neuron and
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the electrode, but also everything else that is between the output of the computer and the
electrode, including all the filters and circuits in the amplifier (e.g. the capacitance neutralization
circuit).

If the time-varying current / is known and V is measured over a long enough period of time,
then it is possible to calculate the kernel K. Assuming that the measure is corrupted by Gaussian
noise, the best estimation of K is the solution of the linear least square problem, i.e., (K,VO)

minimizes

2

N—1 +00
E = Z Vi — Vo — Z I\,pj n—p

n=0 p=0

where N is the number of measurements, i.e., NA is the duration of the stimulation, where A is
the sampling step (A=0.1 ms in our experiments). Typically, the stimulation lasts 5 to 20 s, which
corresponds to 50000 - 200000 measurements.

IE oFE

From ?  “and ?** forall i we find:
N1 oo N-1 N-1
Vi >0, E Vidpn—i = Z I\’rp Z In-—pIn-—i + 10 E Iy
n=>0 p=0 n=0 n=>0

N-1 oo  N-1

Z Vi, = Z I\’,p Z I‘n.fp + NW

n=0 p=0 n=0
with the convention / =0 when k<0 (no input current before time 0). In the following we define
PR B i g
(n) = N 2n=0 Tn (average over all samples).

In practice, we consider only the first M steps of the kernel K, so that the equations above can
be expressed as a matrix problem AX=B, where A is a square matrix with coefficients

L . / . .\ . ’ _ ! I‘.\: i y . — ! '\\.
aij = Unilni)tor jjego.mony, @M = Un—i) foricqo meny, @i = Unj)
for je{0...M-1} and AM.M = 1; X is a column vector with Xi=K; forie{0...M-1} and Xy=Vy B
is a column vector with B= <V I, > for i€{0..M-1} and By= <V>- Solving this linear

equation for X gives the coefficients of the kernel K and the resting potential Vo

Although there is no theoretical problem in solving the linear problem described above, the
matrix A can be large and each coefficient is a sum over all samples. But we note that in the limit

N—+oo (infinite number of samples) <In—i1n—j>= <In1n+i—j> for a stationary current. In this

case the matrix A has only M+1 distinct coefficients. However in practice the number of samples
is finite, so that for j>i,
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N—1—1

(In-—'éfn—j) - Z IrrIn—i—z —j

n=-—

1 N-1
= <Injn+z J Z Ian+z 7

n=N—i
In general, the correction term vanishes only when N—+o0, but we can ensure that it also
vanishes for finite N by enforcing In=0 for all ne{N-M+1...N-1}, i.e,, there is no input current at
the end of the stimulation. In the same way, <l _i>=<l)> for all ie{0...M-1}. It follows that

the matrix has a special form known as a Toeplitz matrix, and solving a linear problem for a such
a matrix can be done very quickly with the use of the Levinson-Durbin algorithm (which is
documented for example in Press et al, 1993). Besides, it is not necessary to store all the values

of v, and I, since the averages «V 'l > can be computed online in real time (M additions at

each time step). More details about expressing the problem with a Toeplitz matrix can be found
in Appendix C.

2.2. CHOOSING THE INPUT SIGNAL

The input signal I must be chosen so that

1. itis zero at the end of the stimulation (last M steps, where M is the kernel size) in order to
use the Levinson-Durbin algorithm, as shown in the previous section;

2. the neuron response is essentially linear;
3. it makes the best possible use of the D/A converters of the acquisition board.

Constraint 2 is satisfied by letting [In) be a sequence of independent random numbers with
appropriate variance, as explained below. Constraint 3 is satisfied by letting each current step I,

be a random number with uniform distribution in the range of the D/A converter. Thus, the
input current is a stationary non-gaussian white noise (digitally sampled). We discuss this
choice in the following.

MEMBRANE RESPONSE DURING INJECTION

In general, the membrane potential does not respond linearly to the input current. However, it
can be considered as locally linear around a given value of the potential; our strategy is thus to
inject a signal that has a small effect on the membrane and a large effect on the electrode.
Because the electrode time constant is much smaller than the membrane time constant, the
choice of a white noise input signal ensures that the membrane potential will not vary much
while the electrode potential will vary much more. Indeed, the standard deviation of the

response of a membrane with time constant T and resistance R, to a white noise is

proportional to Rm/ A /rm. Thus, if the electrode has time constants To and resistance R, then the

ratio of electrode response over membrane response is
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For a sharp electrode, the electrode and membrane resistances have the same magnitude and
with a properly adjusted recording setup, T,,~1007,, so that the electrode voltage response is

about 10 times larger than the membrane response. Thus it is possible to ensure that the
membrane potential remains within about 1 mV of its resting potential while the recorded
potential varies by 10 mV on average.

Besides, linearity of the membrane response is not so crucial in the estimation procedure
because in cases when the response is non-linear, the algorithm finds the best linear
approximation (in the least square sense; see Fig. 5e,f and Fig. 7a).

CHOOSING THE LEVEL OF NOISE INJECTION

To estimate the kernel K, we inject a noisy current consisting of a sequence of independent
random current steps at sampling resolution A, with amplitude uniformly distributed between

1 ax and o as Tmax 1S chosen so that the membrane potential remains close to its resting

level, while the electrode response is large enough so as to maximize the signal/noise ratio. For
an ideal electrode (i.e.,, very fast compared to the membrane), the membrane response is

piecewise exponential, it is a low-pass filtered version of le(t) with time constant Ty where
R, is the membrane resistance, I(t) is the injected current and Ty 1S the membrane time
constant. The standard deviation oy of the membrane potential is then given by the following

formula:

AN
]_ — ¢ T™m A
oy = — s o = GTR?”nImax
1 — e ™m 'm

where ¢ 11s the standard deviation of the injected current, and assuming that the sampling step A
is small compared to the membrane time constant T With the values A=0.1 ms, rm:10 ms,
Rm:40 MQ and Imax=0'5 nA, we obtain GV=0.8 mV, which is small enough. The expression we

derived applies to an ideal electrode; for non-ideal electrodes (which filter the injected current),
it gives an upper bound for oy (approximately, Ty 1S replaced by Tt T where T, is the
electrode time constant). The electrode time constant has the same magnitude as the sampling
step, therefore the electrode response can occasionally be close to the upper bound R ax
where R, is the electrode resistance. It is crucial to estimate the range of the measured signal in
order to adjust the acquisition system correctly. With Re=50 MQ and Imax=0'5 nA, the range is

+25 mV, which was appropriate for our acquisition system.

2.3. ISOLATION OF ELECTRODE KERNEL

Once the kernel of the system neuron+electrode has been determined, the electrode kernel
remains to be extracted. The idea is that the membrane is much slower than the electrode, so
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that we can distinguish the two contributions in the full kernel. As a first approximation, we can
write K=K +K, where K, is the membrane kernel and K, is the electrode kernel. We suppose

that, in the regime in which the kernel was obtained (i.e.,, small white noise injection), the
membrane responds approximately as a first order low-pass linear filter (i.e., a resistor-
capacitor circuit), so that

R _,
Ky (t) = ffj_t/ ’

/

The electrode kernel is supposed to decay much faster, so that for large ¢, K(t)~Km(t). This
suggests the idea of estimating Ky by fitting an exponential function to the tail of K and

subtracting it (K e:K—Km).

However, a more careful examination of the circuit shows that the assumption K=K +K,isa

crude approximation. Indeed, the recorded potential can be more precisely written as

Vr = Vm+Ue
= VO+Km*Im+Ke*I

where Vi, Is the membrane potential (which is the quantity we want to recover), U o IS the
potential across the electrode, and I, is the current entering the membrane. The electrode
filters the command current /; a reasonable approximation is to set Im:Ue/Re, where Re is the
electrode resistance (defined as the ratio Ue/l for a constant injected current I). It follows that

the full kernel reads

Le

K=K, ——+ K,
f K € *
*)
Thus the membrane kernel cannot be simply subtracted from the total kernel. However we can
still use the tail of K to estimate the membrane time constant. Indeed, if K e(t):o(e_t/ Y with

To<Tpy then for large t, we have:

e
. K, R b
I\’ﬂl* R—€ - RE"T‘/U‘ e T I\le(S)dS
R +oo .

(where the convergence of the integral is guaranteed by the dominated convergence theorem).
Thus, fitting an exponential function to the tail of the kernel gives the correct membrane time
constant, but not the correct membrane resistance (it overestimates the resistance).
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In practice, we need to split the kernel K at some point T (the tail parameter) and to fit an
exponential function to the right part (the “tail” of the kernel). The choice and sensitivity to this
parameter is discussed in section 3.1 (typical values in our experiments were T~3—5 ms).

REMOVING THE MEMBRANE KERNEL

We use equation (*) to extract the electrode kernel K o from K. Here we assume that the

membrane kernel Km has already been recovered, i.e., the parameters Rm and T, are known. In

the next section we explain how to obtain good estimates for these parameters, but for the
moment we can assume that we have obtained the correct parameters.

+00
First, we need to estimate the electrode resistance. We have R, = .[K —R,,. In practice only
0
the first M steps of the kernel are known, so that the formula we need is actually:

MA
Re — J‘K _ Rm + R[Ze—MA/Tm
0

where A is the sampling step and Rn? is the estimate from fitting an exponential function to the
tail of the full kernel K (which would be the first guess for Ry). Once R. and K, are known, we
invert the relationship (*) by using the Z-transform (see Appendix D - in the end it simply
amounts to applying a low-pass filter).

The difficulty in using the procedure above is that only T, €an be estimated from the tail of the

kernel K, while it is hard to estimate Rm reliably. If Rm is not estimated correctly, then the

estimated electrode kernel K o includes a residual slow component (e_t/ 'm) from the membrane
kernel. Therefore we can use the following strategy to obtain a better estimate of R for each

value Rn* of the membrane resistance, the procedure gives an estimate of the electrode kernel
Ke[R*,m); for the true value Rn* = Rm we expect the residual slow component to vanish, so that

we search the resistance value which minimizes the tail of Ke(Rn*):

+0o0
R, = argmin f Ix"G(an)zdt
Ry, T

Since the variable to be adjusted is only one-dimensional, we simply use the golden search
algorithm to find the optimal resistance. Note that the formula above is exact in the limit of large
T. In some practical cases when the electrode resistance is very small compared to the
membrane resistance (typically with patch electrodes), there can be several local minima and
the golden search algorithm can lead to the wrong value. A simple way to avoid this problem is
to isolate the first minimum (which is the correct one) by calculating the error measure for a
small value of Rp*and increase Ryn* in logarithmic steps (i.e., multiplying by a constant factor at
every step) until the error starts to grow; then the first minimum is bracketed by the last two
values of Rn*.

2.4. IMPLEMENTATION
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The computer implementation should follow easily from the algorithms we have previously
described. In this section we outline a few important points and the general procedure. The
programs must run on a real time computer system connected to the amplifier.

ESTIMATION PROCEDURE

The estimation procedure lasts about 10 s and must be performed when the electrode is impaled
in the neuron (because the properties of the electrode are not the same as in the extracellular
medium). During this time, a uniform white noise current (in the form of a sequence of
independent random numbers) is injected in the neuron. The signal is sent through an
acquisition board to the amplifier. The amplifier should be properly set, with the capacitance
neutralization circuit set at a high level (so as to reduce the time constant of the electrode). The
bridge compensation circuit must be off. The range of the uniform noise must be the same as the
range of the D/A converters of the acquisition board. The range of the input A/D converters,
which relay the voltage recording to the computer, must be large enough to avoid clipping (it is
best to check on an external oscilloscope). Although the membrane potential does not vary
much, the electrode voltage is much more variable. For example, if the range of the uniform
current is £1 nA and the electrode is very fast (i.e., faster than the acquisition rate) and its
resistance is 100 MQ (sharp electrode), then the potential would vary between —100 mV and
100 mV. Note that it can be useful to change the offset of the voltage output of the amplifier so
that the resting potential is close to 0 mV.

The computer program does not need to store the whole sequence of measures (/ and V). Itis

enough so store in memory the running averages of Ll o Vol o1, and Vv, At the end of the

stimulation, the program applies the Levinson-Durbin algorithm to find the full kernel and
extract the electrode kernel with the algorithms described previously (exponential fitting of the
tail followed by suppression of the membrane kernel). This part of the algorithm is not required
to run in real time. Subsequently, only the electrode kernel needs to be stored. Typically, the
resulting kernel is short and only the first tens of steps are non zero.

ONLINE COMPENSATION

Once the electrode kernel has been calculated, it can be used in real time to estimate the
electrode voltage and subtract it from the recording. Again, the bridge compensation circuit
must be turned off on the amplifier. Then it must be remembered that the potential actually
recorded by the system is the sum of the membrane and the electrode responses and therefore it
can be much larger than the membrane potential. The electrode voltage is subtracted in real
time by a convolution, the input current I being known:

i—1
Vin(n) = Vi(n) = > Ke(p)I(n — p)

p=0

where I is the number of steps in the electrode kernel (typically 30-50). Thus, the value of the
previous [ steps of the injected current must be held in memory (using for example a circular
array).

3. PRACTICAL ASPECTS
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The quality of AEC recordings depends on a number of parameters and assumptions. In this
section we examine the influence of AEC parameters such as the duration and amplitude of the
white noise injection (3.1), the instabilities that may arise from the feedback delay of the
acquisition system (3.2), and the robustness of the method with respect to the main three
hypotheses we made: the electrode time constant is short compared to the membrane time
constant (3.3), the membrane response is essentially exponential (3.4) and the electrode is
linear (3.5). In practice, these hypotheses are only approximations but fortunately it generally
has a mild effect on the quality of electrode estimation.

3.1. ESTIMATION PARAMETERS

The kernel estimation algorithm relies essentially on the following parameters: the parameters
of the noise injection (duration and amplitude) and the parameters of the kernels (size and the
tail parameter).

In theory, in a noise-free system, observing the response to a current injection with same
duration as the kernel is enough to determine the kernel, that is, about 10-20 ms. However real
systems are noisy and recording noise can be averaged out by using longer durations. We found
(using high-resistance sharp electrodes) that 5 s was enough to obtain reliable and smooth
kernels in vitro (we found no difference with 10 and 20 s stimulations; see Fig. 3c,d). A shorter
duration is generally sufficient but 5 s is safer (in one case we found a significant difference with
an injection lasting only 1 s). In vivo, recordings are noisier because of the network activity; in
our experience, reliable estimates could be found with stimulations lasting 20 s. The amplitude
of the noise current should be set so that the membrane response is small, as explained in
section 2.2; we found no significant impact of this parameter in the experiments. A constant
current can also be applied in addition to the white noise, for example to avoid spikes. In this
case the kernel estimation can be sensitive to the amount of DC current if the electrode is
significantly nonlinear. This issue is addressed in detail in section 3.5.

The size of the kernel (neuron + electrode) is essentially determined by the speed of the
hardware, since the computational cost of online operations is directly proportional to the
number of values in the kernel. We used 150-200 points with a 10 kHz sampling rate (i.e., the
kernel size was 15-20 ms). A rule of thumb is that the kernel should contain about one
membrane time constant (although this is not a crucial requirement). In fact, the kernel size
should not be too large (i.e., many times the membrane time constant), otherwise a large part of
the kernel is non-significant (close to zero) and dominated by noise.

The tail parameter is used for extracting the electrode kernel; it corresponds to the time from
which the full kernel is considered as corresponding to the membrane response only, and it has
to be chosen prior to the separation of the full kernel into a membrane kernel and an electrode
kernel. The membrane time constant is estimated from the tail of the kernel and the electrode
kernel is assumed to vanish from that point. There is clearly a trade-off in the choice of this
parameter: it must be large enough so that the electrode kernel does indeed vanish after that
point, but small enough so that there are enough remaining points to estimate the membrane
time constant. Fortunately, there is a broad plateau of parameter values for which the kernel
estimation is correct (see simulation results in Fig. 3a, confirmed by in vitro experiments in Fig.
3b).

3.2. FEEDBACK DELAY
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In a digital dynamic clamp operated by a computer (as opposed to an analog dynamic clamp
system), the feedback delay is a source of instability - which is not specific to AEC. A computer
or a digital signal processor records and injects at sampling rate f. At time tn=n/f, the membrane

potential Vn:V(tn) is sampled, then the computer calculates the current to inject In:g(E—Vn)

during the interval [t,, tn+1[, and the current is injected during the next interval [tn+1, tn+2[ (hence
the feedback delay is 2/f). Assuming perfect electrode compensation (i.e., in effect, no electrode),
the dynamics of the sampled membrane potential is given by the following recurrence equation:

n+2 M *(-MRI,

MV, +(1-\)gR(E-V, )

where A=exp(—1/1f)€]0,1[ (t=RC is the membrane time constant). In general the sampling step
is at least two orders of magnitude smaller than the membrane time constant, so that
~1-1/(zf). This is a second order linear recurrence equation, and the solutions are determined

by the roots of the polynomial XZ—kX+(1—X)gR. Oscillations can arise if the discriminant is
negative, i.e., X2—4(1—k)gR<0, which is approximately (using 1/f<<1):

gR>i

In this case the real part of the roots is —A/2, which is smaller than one, so that the solution of
the recurrence equation is a damped oscillation, i.e., ringing. If the discriminant is positive, then
there are two real roots a and b, such that a+b=A€]0,1[ and ab=(1-A)gR>0. The latter inequality
means that a and b have the same sign, and a+b>0 implies that this sign is positive. From the
inequality a+b<1, it follows that a and b are both in ]0,1], therefore the solutions of the
recurrence equation are stable.

Thus, in the case of perfect compensation, the feedback delay induces ringing if gR>tf/4 but
does not destabilize the system for constant conductances. In our experiments, tf~100, so that
the maximum clamp conductance is about 25 times the membrane conductance.

Note that this inequality also applies to the maximal feedback gain of a digital voltage-clamp
system (the expression we obtained is very similar to the formula derived by Finkel and Redman
(1984) in the analysis of the discontinuous voltage-clamp: gc=rf/[RD), where D is the duty

cycle).

3.3. TIME CONSTANTS

To separate the membrane kernel and the electrode kernel, we use the assumption that the
electrode kernel is shorter than the membrane kernel, so that the membrane time constant can
be estimated from the tail of the full kernel. This estimation can still be done if the electrode time
constant is only slightly shorter than the membrane time constant. However, the quality of the
electrode kernel estimation degrades with larger ratios te/tm, so that the electrode should be as
fast as possible (this is one reason why it is still useful to use the capacitance neutralization
circuit on the amplifier - which is a feedback rather than a compensation method). Numerical
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simulations (Fig 4a) show that the quality degrades continuously with larger ratios and starts to
degrade seriously when this ratio is greater than 1/10 (the rule of thumb is that the error in
signal reconstruction grows as t./tm), so that AEC should be useful when the electrode time
constant is about one order of magnitude shorter than the membrane time constant (in our
somatic recordings with sharp microelectrodes, the electrode time constant was about 0.1 ms, so
that the minimum membrane time constant for a good kernel estimation should be about 1 ms).

When the electrode time constant is large, the quality of recordings is impaired but the
technique is still usable (in continuous mode), as shown on Fig. 4b-d (numerical simulations),
where the ratio of time constants is about 1/10. The situation is quite different with DCC, which
also has a constraint on time constants: proper operation of the DCC requires ratios lower than
1/50-1/100, but the technique does not give a meaningful signal if the ratio is higher (first
because the optimal clock frequency is very low, second because it is impossible to accurately
determine the optimal frequency).

All single-electrode compensation methods have a requirement on the ratio of time constants
(te/Tm): setting the bridge resistance requires separating electrode and membrane responses,
while the discontinuous current clamp is valid when the ratio is about 1/100 or better. In this
respect, AEC has a better critical ratio, so that it can be used in more situations than either
bridge or DCC.

3.4. DENDRITES

To extract the electrode kernel from the full kernel (neuron + electrode), we assume that the
membrane kernel is a single exponential function and estimate the time constant from the tail of
the kernel. In fact, due to the dendritic tree, there are additional exponential modes with faster
time constants, some of which are similar to the electrode time constant, as shown in Fig. 5
(simulation of a pyramidal cell). With a single electrode (for any method), there is no way to
distinguish fast dendritic contributions from electrode contributions at the same time scale. In
fact, for any linear time-invariant system, such as a linear electrode and a passive neuron with a
dendritic tree, the relationship between the current injected at a given point and the potential
recorded at another (or the same) point is fully characterized by the kernel, so that there is no
more information that we may have on the system. Therefore, an electrode compensation
system must rely on the fact that the fast dendritic contributions to the kernel are relatively
small in amplitude. This might not be always the case (and if so, a second electrode would be
necessary), but at least in numerical simulations of morphologically reconstructed pyramidal
cells, the dendrites contribute not more than a few M) of the total resistance (the resistance of
typical sharp electrodes are around 80 M(1).

Because the fast dendritic contribution to the kernel is included in the electrode kernel, and
therefore subtracted by electrode compensation, there is a little less high-frequency power in
the compensated trace than in the real membrane potential. However, this is a constant
subtraction and not a low-pass filtering, so that fast active changes in membrane properties (e.g.
spikes) are not filtered out by the method, as shown in Fig. 5f.

3.5. NONLINEARITIES

The crucial hypothesis underlying the AEC technique is that the electrode is linear. However, it is
known that high-resistance electrodes can be nonlinear, which is characterized by the fact the
electrode resistance can change with strong currents. Physical modeling of nonlinearities
(Purves, 1981) indicates that these are slow processes due to redistribution of ions near the
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electrode tip. Nonlinearities are stronger for electrode tips with a small radius (which is
inversely correlated with the resistance) and when the concentrations of the two solutions
(intracellular and inside the electrode) differ. However in practice the amount of electrode
nonlinearity is highly variable and unfortunately cannot be assessed before the electrode is
impaled into the cell - although electrodes with an unusually high resistance in the slice can be
discarded from the start. This nonlinearity problem is not different with AEC than with standard
bridge compensation, however AEC provides a simple way to measure it, and possibly discard
the recordings if the nonlinearity is too important. We first note that nonlinearities are too slow
to affect the stability of dynamic clamp recordings, so that the issue is rather the quality of
voltage estimation.

Electrode nonlinearities are usually measured before impalement from the I-V curve of the
electrode, but it is not possible to use the same approach intracellularly because the I-V curve of
the electrode could be confused with the I-V curve of the neuron. AEC can be used to measure
the electrode resistance by running the kernel estimation procedure intracellularly with
different levels of constant injected current (Fig. 6), corresponding to the typical (average) levels
that will be used subsequently, and check that the amount of nonlinearity is acceptable (in our
experiments, about half the electrodes were not significantly nonlinear). This raises the issue of
estimating the kernel when the membrane has a nonlinear, possibly spiking, response. Although
in principle, the response of the whole system (membrane + electrode) should be linear during
the estimation of the electrode kernel, this is not a strong requirement for the membrane,
because the method calculates the best linear approximation to that response. The full kernel is,
to a first approximation, Ke + Km, and if the membrane behaves non-linearly (e.g. spiking), the
impact will mainly be on Km, therefore the main issue in that case is whether the estimated Km
differs significantly from an exponential function, so that it can be properly subtracted.
Numerical simulations show that moderate spiking activity has a small impact on kernel
estimation; we were also able to estimate electrode kernels during moderate spiking activity in
vivo (see next section).

In dynamic clamp, the injected current can be transiently very high: for example during an
action potential, the injected current becomes typically very large and negative (for example for
a current of the form I=g(E-Vn) where E is low). These transients would be a big problem for
electrode compensation if nonlinearities were fast. Fortunately, we confirmed that transients do
not trigger significant nonlinearities. Fig. 6e shows the measured compensated voltage and
current at the peaks of action potentials during conductance noise protocols (in vitro and in
vivo). Those two quantities were very weakly correlated (the slopes of linear regressions ranged
from -.1 MQ to -.6 MQ), which indicates that the electrode resistance could not have changed
much during spikes (any error ARe in the estimation of the electrode resistance would result in
an error ARe*1 in the voltage estimation.).

Electrode nonlinearity can be approximated by a quadratic dependence of voltage on current or
equivalently as a linear change in resistance with injected current (M(/nA). The voltage error
resulting from an error ARe in the estimation of the electrode resistance can be described simply
as follows (see Fig. 6d). The resistance error (compared to infinitesimal current injection) is ARe
= A*[, where A (in M{)/nA) quantifies the nonlinearity (measured with AEC as in Fig. 6a-c). If the
membrane resistance is Rm, then the voltage error resulting from the nonlinearity is A*I*=
(A/Rm?)*AV?, where AV is the depolarization of the membrane induced by the injection (= Vm -
resting potential). For example, if the electrode nonlinearity is 2 M{}/nA and the membrane
resistance is 60 M(), then the voltage error is 0.0005 mV / mV? (e.g. 0.5 mV for 30 mV
depolarization). This analysis applies to linear depolarizations induced by constant subthreshold
currents, not for example for action potentials, which are transient.
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4. AEC RECORDINGS IN VITRO AND IN VIVO

PRACTICAL ISSUES

There are two main important practical issues in experiments, especially in vivo: whether the
electrode kernel can change over the time course of an experiment, and whether the technique
can be easily used given unavoidable perturbations such as recording noise and synaptic
activity.

It is known that the electrode resistance can change from time to time over the time course of an
experiment. It is then necessary to recalibrate the technique (e.g. balance the bridge). The same
applies for AEC, but not more often than with other techniques. In practice, one should run the
estimation procedure from time to time and check that the kernel has not changed. Fortunately,
it only takes a few seconds and it is fully automatic. In vivo, we found that electrode properties
could remain stable for up to two hours, as assessed with kernel estimations obtained
repetitively, also when using different constant current injections and different durations of
white noise injection (Fig. 7b). Regarding stability, an important point is that AEC allows the use
of high-resistance sharp electrodes, which are more stable in vivo than patch electrodes.

The second practical issue is the problem of ongoing synaptic activity and recording noise.
Recording noise is not a very big problem for the technique because the number of
measurements (50,000 points for 5 s estimations at 10 kHz) is much larger than the number of
points in the kernel (typically around 150), so that noise is averaged out. Important variations of
the membrane potential during estimation, such as spiking activity, could be more problematic.
However, as we mentioned earlier, the linearity hypothesis is crucial for the electrode but not so
much for the membrane, because the method finds the best linear kernel and the membrane part
is removed - the fact that the membrane kernel is not accurate is not an issue as long as the
electrode kernel is correctly recovered. Membrane nonlinearities can affect the electrode kernel
only if they introduce a systematic current-voltage relationship at the time scale of the electrode;
otherwise the perturbations are averaged out. We checked in numerical simulations that
electrode kernel estimation is possible during spiking activity, with a small impact on the
estimated kernel. We were indeed able to run the procedure in vivo while the neuron was
spiking and use the resulting electrode kernel for subsequent dynamic clamp experiments (Fig.
7a). In vivo, we used longer injections (20 s) to make sure that all sources of noise are averaged
out.

EXAMPLES

Here we show a number of examples of dynamic clamp experiments using AEC in vitro and in
vivo.

SQUARE CONDUCTANCE WAVES

We injected a square wave of alternating “excitatory” ( E =V, +10) and “inhibitory”

(Eiiviion = Vies —10) conductance pulses with different conductance amplitudes (range 10-100

excitation

nS) and frequencies (range 10-1000 Hz) in vitro, with sharp electrodes (Fig. 7c). This is a
challenging protocol if the conductance or the frequency is large. In particular, bridge
compensation can be used only for very small conductances (see Appendix B), and DCC shows
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strong artifacts at high frequencies. The responses with AEC correspond to what would be
expected from a passive cell model.

CONDUCTANCE NOISE

We injected a colored conductance noise consisting of two stochastic variables, g¢(t) for
excitation and gj(t) for inhibition (Figure 7d), mimicking cortical synaptic background activity as
seen in vivo (Destexhe et al, 2001). This protocol could not be performed with bridge
compensation (recordings are unstable). With AEC we could easily inject synaptic noise of high
total conductance (5 times the leak conductance). The spikes can be recorded with excellent
precision (while they would be reduced to a few sampling points with DCC). We performed this
protocol both in vitro and in vivo.

RELIABILITY OF SPIKE TIMING WITH RECREATED SYNAPTIC ACTIVITY

The precision of dynamic clamp recordings with AEC allowed us to evaluate the reliability and
precision of spike timing in cortical neurons with recreated synaptic activity, instead of current
noise (Mainen and Sejnowski, 1995). Figure 7e shows the responses of cortical neurons to
repeated dynamic clamp injections of frozen conductance noise, mimicking synaptic activity (as
described above). In cortical neurons in vitro (left), the repetition of such a realistic, fluctuating
conductance stimulus can lead to highly precise and reliable spiking patterns (as has also been
shown by others, e.g. Harsch and Robinson, 2000; Tateno and Robinson, 2006). In a cortical
neuron in vivo, however (right), due to real synaptic inputs from the network and possibly to
different intrinsic properties of the recorded cell (note the Vm close to threshold at the
beginning of the shown traces, before any conductance injection), the situation is more complex:
on the example shown, one particular spike (box) appears as precise and reliable from trial to
trial, but this is not the case for the other spikes. This example illustrates that future dynamic
clamp experiments in vivo, enabled by the AEC method, would be useful in identifying the
conditions for spike-timing precision and reliability in functioning cortical networks.

5. DISCUSSION

In this chapter, we have reviewed the recent developments of a technique to perform dynamic-
clamp experiments at high resolution using single electrodes. We have described the theory
behind AEC and its implementation (Section 2), as well as some practical aspects such as how to
estimate compensation parameters, and the effect of electrode nonlinearities and of the
dendrites (Section 3). We also reviewed practical examples of demanding conditions, such as
injection of conductance noise and dynamic-clamp experiments in vivo (Section 4). We now
discuss the AEC technique in reference to other compensation techniques, as well as future
perspectives.

The AEC technique is based on a non-parametric linear model of the electrode which is
automatically calibrated. It allows accurate intracellular recordings at a high sampling frequency
during simultaneous current injection, uncontaminated by capacitive transients, which makes it
especially appropriate for dynamic clamp protocols, especially with high-resistance electrodes.
Previous techniques suffered from either instability issues (bridge compensation) or limited
temporal resolution (DCC). Another advantage of model-based electrode compensation is that
the technique provides the precise characteristics of the electrode along with the recording,
which can be useful to estimate the recording quality. It should be noted that AEC compensates
for the electrode voltage, but does not modify the injected current. Thus, the injected current
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remains filtered by the electrode, although the true injected current can be approximately
estimated off-line from the knowledge of the electrode kernel.

The main condition that has to be met for the method to work accurately is the linearity of the
electrode and of the whole recording chain between the electrode and the computer (amplifiers
and filters), for the range of expected currents. The technique provides a fast and automated
way to measure electrode nonlinearities intracellularly, which was previously difficult, if not
impossible. One can then estimate the resulting errors in subsequent recordings, and possibly
discard the recordings if the nonlinearity is too important. These nonlinearities are due to slow
processes, so that large currents that are only transiently injected should not degrade the quality
of electrode compensation.

Another requirement, which is also shared by previous techniques, is that the electrode and
membrane time constants should be well separated, which means that the capacitance
neutralization provided by the amplifier should be used optimally like in the other methods.
However, admissible results can be obtained if the electrode is only 10 times faster than the
membrane, while DCC requires electrodes about 100 times faster than the membrane. Thus AEC
should extend the applicability of single-electrode dynamic clamp to neurons with much shorter
time constants.

We are now investigating several extensions of the AEC technique. In particular, we are
currently working on using our compensation method for the single-electrode voltage-clamp.
The development of this "AEC-VC" technique represents a considerable interest because it
would enable recording in voltage-clamp mode using sharp electrodes and without using a
discontinuous mode, therefore enabling continuous voltage-clamp recordings with sharp
electrodes in vivo. We are presently testing this technique on sharp-electrode recordings in vivo
and in vitro, and compare it with discontinuous voltage-clamp (DVC) methods. Other possible
extensions include dendritic patch-clamp recordings which use electrodes with higher series
resistance compared to somatic patch recordings, as well as applications of the AEC to model
electrode nonlinearities.

APPENDIX

A) TYPICAL SOURCES OF ERRORS

Here we enumerate a number of anomalous situations that can occur during the estimation or
compensation stages that may produce unwanted biases in the electrode kernel estimate. Many
of these errors can be easily noticed as anomalies in the electrode kernel, as is illustrated in Fig.
8.

The bridge compensation is on: in this case the program can still capture a kernel but it has
a strange shape (Fig. 8a) with a total resistance close to 0 (if it is well adjusted), which
makes the membrane suppression procedure fail.

Input or output ranges on the acquisition board are not correctly set: if the ranges are
too large, the method only loses some accuracy; however if the ranges are not large
enough, then clipping occurs, which can be disastrous both at the estimation stage and at
the compensation stage. It can remain unnoticed at the estimation stage because it only
results in errors in the estimated kernel. At the compensation stage it results in large
compensation errors which can be seen as noise on the compensated output in current

Page 16 of 30



clamp. It is more serious in dynamic clamp because it can result in losing the cell because
of oscillatory instabilities.

The kernel is too large: if the number of steps M in the full kernel is very large, then during
the estimation procedure the program may not have enough time to compute all the
running averages within one time step. Depending on the real time system, this can result
in freezing the program or in errors in the kernel (Fig. 8b). The latter is more problematic
because it can remain unnoticed: in this case, the program sometimes takes more than
one step to do all the required operations and it can be an important source of error.
Therefore it is important to check that the kernel is not too large for the system.

The tail parameter is too small: one must specify what part of the kernel (which we called
the tail) is used for estimating the membrane contribution. If the splitting time is too
small, then the tail contains part of the electrode kernel, which makes the procedure fail.
This can sometimes be seen as the electrode kernel not vanishing at the end (Fig. 8c) or as
a negative part appearing in the electrode kernel (usually the kernel is entirely positive).

The tail parameter is too large: if the splitting time is too large, then remaining tail is too
small to estimate the membrane kernel reliably. This also results in errors in the electrode
kernel (although not as serious). There is however a broad range of values of this
parameter for which there is no significant error in the kernel.

The capacitance neutralization has changed: it must be remembered that the electrode
kernel captures in fact not only the electrode properties, but the properties of the whole
recording setup, including the amplifier. Therefore if any circuit is used on the amplifier,
their setting must remain unchanged as long the same electrode kernel is used, otherwise
the estimation procedure should be run again.

The capacitance neutralization is too high: instability problems can appear if the
capacitance neutralization circuit is set at a high value. This is not specific to AEC, but it
can be identified in the electrode kernel as damped oscillations (Fig. 8d). The oscillations
should disappear if the capacitance neutralization is set at a slightly lower value.

The electrode properties have changed: it happens that the electrode properties change
during an experiment for some reason (e.g. small movements of the electrode). It results
in compensation errors which can be seen as abnormal noise on the traces (with current
noise injection). In this case the estimation procedure must be run again (just like with the
standard bridge compensation method). The best practice is to run the estimation once in
a while in order to check that the electrode properties have not changed.

The amplifier or filters are nonlinear: normally good electrical circuits in amplifiers and
acquisition boards should be linear. However there can be small fast electrical
nonlinearities if some components are faulty. This can be identified as small changes in
the kernels for different noise amplitudes, as small transients in response to current
pulses or as abnormal noise on compensated traces with fluctuating inputs (Fig. 8e,f).
Searching for electrical nonlinearities should be done using an electronic circuit modeling
the cell + electrode.

B) DYNAMIC CLAMP ERRORS WITH BRIDGE COMPENSATION
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B.1. STEADY-STATE ERRORS RESULTING FROM POOR ELECTRODE
COMPENSATION

At equilibrium, the recording potential before compensation is V.=V +R 1 (by definition of the

electrode resistance, independently of its properties). If the estimated electrode resistance is
R *AR, (whether by bridge compensation or AEC), then the estimated potential is

V=V _+AR,I= (R+ARe)g(E—V), thus

v (R+ AR.)gE
1+ (R+AR.)g

which can be expressed as follows: the dynamic clamp interprets the residual electrode
resistance as part of the membrane resistance. The membrane resistance is

gRE

Vin = RE = gR(E = V) = === 75,

Therefore the relative error (compared to the case AR e:O) is

Vi | _ 1+gR .

v 1+ (R+AR.)g
AR.q

1+ (R+AR.)g

—AR.q

R

(for small error AR e)' For large clamp conductance g, the relative error tends to —AR e/ (R+AR e)'

B.2 INSTABILITIES WITH BRIDGE COMPENSATION

We consider a dynamic clamp protocol with ideal bridge compensation, i.e., V=V.-R ], where R o

is the (perfectly estimated) electrode resistance. The dynamic clamp is analog, so that there is no
feedback delay. The electrode is modeled as a resistor (Re) and a capacitor (Ce). In the absence

of the capacitor, the bridge estimation is perfect, i.e., V:Vm, otherwise it differs from the real

membrane potential because of the capacitive current through the electrode. The dynamic clamp
current is I:g(E—Vr—ReI), thus:

9B =V;)

= —a(E-V,
Lgr, O )

where a is a definition. We already note that a<0 if and only if gRe<1, which, as we will see, is

the stability condition. In the following we consider Laplace transforms of the time-dependent
variables. With the Laplace variable s, the impedance of a capacitor is 1/(Cs). The current
flowing through the electrode is the command current minus the current flowing through the
electrode capacitance:
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Ie=I—CesVr=0L(E—Vr)—CesVr (N
It also equals the transmembrane current:
Ie‘. = (Rr_nl + CTS]I«";M = [R;al + C‘S;’(\Irr - Re‘-If‘-j
and thus

(R} + Cs)V,

m.

L Ry Os)R,

(2)

e

From equations (1) and (2), it follows:

(Rfl + C5)V, = (a(E = V) — CosVy) (1 + (Ril + Cs)R,)

m m

The solutions are stable if and only if the roots of the following polynomial have a negative real
part:

R4+ Cx+ (a+ Cox)1 + (R, + Cx)R,)

“m T

This is equivalent to the statement that the sum of the roots is negative and their product is
positive, that is:

ClaR, + 1)+ Co(1+ R,,'R.)
R4+ a(l+R,'R.)

> 0
m > 0

If >0, this is clearly true. Conversely, the second inequality can be re-expressed as
1+oc(Rm+Re)>0, and using the formula for a:

1 + QRTH

>0
1 —gk,

which is true if and only inge<1 (i.e, a>0).

Thus, the condition for stability with ideal bridge compensation is gR<1. There is no ringing

in this case (only non-oscillatory instability), it only occurs when feedback delays are introduced
(see next paragraph). To compare with the stability condition in the next section, it is useful to
write this condition as follows:

R
R< -
9= R

e

In our experiments (with high resistance electrodes), this ratio was between 0.3 and 1, and in
that case only conductances smaller than the membrane conductance can be injected. When the

Page 19 of 30



electrode is correctly compensated, the limiting factor is the feedback delay, as explained below,
and the critical clamp conductance is much higher.

In the derivation of the critical conductance, we modeled the electrode resistance as a simple
RC circuit, with the capacitor on the amplifier side. If the capacitance is distributed, the result
would change slightly; for example if the capacitor is moved to the middle of the resistor, then
the critical conductance will be twice higher (because half of the resistance if fully
compensated).

C. FAST IMPLEMENTATION OF KERNEL ESTIMATION

In section 2.1, we saw that the least square estimation of the kernel is a matrix problem AX=B,

aij = In—jI

where A is a square matrix with coefficients n—i/ for ije{0..M-1},

i, M = {In—i / forie{0..M-1}, aMj = {‘-I'”'_j / for je{0..M-1} and “M.M = 1; Xisa
column vector with X=K; for ie{0...M-1} and Xy=Vy Bisa column vector with B= <V, I, _i>
forie{0...M—-1} and By= <V >

The matrix has a special form if the signal [ vanishes in the last M steps, so that
<In—iln—j>: <In1n+i—j>' Then we define a =<l 1> for all ke{0...M—-1}, and y= <ly>, s0

that the matrix A can be written as follows:

aq a1 a9 oo aAp—1 00 Yy
aq a aq ..o Qp—o Y
as ay ag ce.o ap-3 Yy A Y
ey Y 1
apr—1  Qapr—2  Apf—-3 ... g Yy
Yy y vy Y 1 /
K B
X = Jand B = , andYT:(y yo... y).
We also define n
Solving the matrix equation by block gives
M—-1
I ra T T e
LO — <Ln_> - Y K — (L-n) - <I-n> Z I&I)
p=0
A-YYDHK = B-—(V,)Y
U=A-YY7T are Uij = Qli—j| — -;':L;":Q

The coefficients of the matrix ’ . The coefficients

of the vector B—-(V,)Y are <Vn1n—i>_ <Vn> <In>' The matrix U is a Toeplitz matrix, and

solving a linear problem for a Toeplitz matrix can be done very quickly with the use of the
Levinson-Durbin algorithm (which is documented for example in Press et al, 1993). It is not
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necessary to store all the values of vy and I, since the averages <V,l,_i> can be computed

n-j
online in real time (M additions at each time step).

D. EXTRACTION OF THE ELECTRODE KERNEL

To extract the electrode kernel (section 2.3), we need to solve the following equation for Ke:

-

K.

— + K. (3)

K,

where K is a known exponential function representing the membrane kernel (resistance Rm,
time constant tn). We use the Z-transform to transform convolutions into products:

el i -1
Z[K.] = Z[K] (L [RI‘] + 1))

K=K, %

We have

. _ —A/‘c . = BT . .
with A=e m. We define and after a little algebra, we obtain

! 1
ZIK,) =Z|K] |1~ :
[ by } [ X} o _|_ J_ J_ - a_ilzil

The second term corresponds to a first order low-pass filter which can be implemented
recursively as follows:

s — I‘l, }'\’
0 at1x0
Y, = &’-—}r'lKn + o%ly?l*l forn > 0.
then K, =K-Y.
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FIGURE LEGENDS

FIGURE 1

Dynamic clamp with high-resistance electrodes

(a) When recording with a single electrode and injecting current at the same time, the recorded
potential is V=V +U_, where v is the membrane potential and U, is the voltage across the
electrode. Bridge compensation consists in modeling the electrode as a pure resistance: U=R],
where R, is the electrode resistance and I is the injected current, and subtracting the estimated
electrode voltage from the recording V.. Because the electrode is not a pure resistance, a

capacitance transient appears on the compensated trace.

(b) In dynamic clamp (here excitatory and inhibitory conductances ge and g;), capacitive
transients are injected back and induce instabilities. If the conductances are too high or too fast
(here they were low-pass filtered), the recording is unstable (no meaningful signal).

(c) The discontinuous current clamp (DCC) consists in alternating current injection and voltage
recording, so that the potential is recorded at times when the electrode voltage U. has vanished.
Thus the sampling frequency is limited by the response speed of the electrode.

(d) Stable dynamic clamp is possible with DCC (here: fluctuating excitatory and inhibitory
conductances), but the temporal resolution is limited: the shape of action potentials cannot be
captured.

(e) Active electrode compensation is used in continuous mode, with a computer running both
the dynamic clamp protocol and the electrode compensation.

(f) Stable dynamic clamp is possible with AEC with high temporal resolution.

FIGURE 2

AEC algorithm

(a) Non-Gaussian white noise current (scale bar: 0.5 nA) is injected into the neuron, as a series
of independent random current steps uniformly distributed in -0.5 nA...0.5 nA. The total
response V,, corresponding to the sum of the membrane potential V,, and the voltage drop across
the electrode U, is recorded (scale bar: 10 mV). The cross-correlation between the input current
and the output voltage and the autocorrelation of the current give the kernel K (or impulse
response) of the neuronal membrane + electrode system (full kernel K, right). The tail of the
kernel is fit to an exponential function, which gives a first estimation of the membrane kernel
Km (note: the resistance of each bin is very small since the kernel is distributed over a long
duration). The electrode kernel Ke is recovered from K and Km by solving the equation
K=Ke+Km*(Ke/Re) (convolution). The process is iterated several times to obtain a better
estimation of the membrane kernel.

(b) A typical electrode kernel (cortical cell in vitro), consisting of 3 phases: 1) the first two time
steps are zero, representing the feedback delay of the system; 2) a fast rise (most likely
representing the electrical characteristics of the amplifier or acquisition filters); 3) a slower
decay.
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(c) The electrode kernel also captures all the filters on the amplifier: here, 5 kernels measured in
the electronic model cell with different settings for the low-pass filter of the amplifier (.1 - 10
kHz).

(d) Once the electrode kernel has been calibrated, it is then used in real time for electrode
compensation: the injected current (scale bar: 5 nA) is convolved with the electrode kernel to
provide the electrode response Ue to this current. Ug is then subtracted from the total recorded
voltage V, (scale bars: 100 mV) to yield the Vy, (Vagc; scale bars: 10 mV, 100 ms).

FIGURE 3

Sensitivity of AEC to estimation parameters

(a) Numerical simulations show that there is a broad plateau of values of the tail parameter for
which the kernel estimation is correct, as shown in this plot of estimated electrode resistance Re
vs. tail parameter (target Re = 50 MQ, electrode time constant t. = 0.2 ms, membrane time
constant T, = 15 ms). If the parameter is too small, part of the electrode kernel is removed
together with the membrane kernel and estimated R. is too small (left). If it is too close to the
total size of the full kernel (15 ms in this case), the fit of the membrane response by an
exponential fails and this also leads to a wrong estimation (right).

(b) An example of a real electrode, showing that the estimated kernels are very similar for 3
different values of the tail parameter (5, 7 and 10 ms), confirming the existence of a broad
plateau (regular spiking cortical cell).

(c,d) For one cortical cell recorded in vitro, parameters of the estimated electrode kernel for
different durations of white noise (WN) injection used for the estimation (interleaved durations
of 1s, 5s, 10s and 20s were used). The electrode resistance (c) is the sum of all the kernel
coefficients. The electrode capacitance (d) is obtained by dividing t by the resistance, where T is
the decay time constant of an exponential fit to the decaying part of the kernel. All the 44 kernels
are shown, superimposed, as an inset in the right panel. One of the kernels (dashed line) appears
as an outlier, the corresponding point on the right panel is indicated by a dashed circle. ANOVA
tests showed that only the 1s WN duration produced resistance estimates significantly different
from the other durations (P<0.01), whether or not the outlier was included in the analysis. For
the capacitance, ANOVA tests showed that there was no significant difference between the different
durations, or a significant difference between 1s and 10s when the outlier was removed.

FIGURE 4

Role of electrode and membrane time constants on electrode compensation

(a). We simulated a model including a passive membrane (R, = 50 MQ, t» = 20 ms) and a simple
RC electrode with resistance R. = 80 MQ and varying time constant. Applying the AEC estimation
procedure to this model shows that the quality of the electrode kernel degrades continuously
when the ratio of electrode time constant and membrane time constant increases. The plot
shows the estimated resistance with AEC, relative to the actual resistance (80 MQ). The error on
estimated resistance with AEC was less than 10% for te/tm <9%.

(b) We simulated a dynamic clamp protocol with conductance noise and a slow electrode made
of four resistors and capacitors (time constant 0.8 ms), impaled into a cortical cell modeled as a
single-compartment Hodgkin-Huxley type model (equations and parameters in Destexhe et al,
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1998), and connected to a model amplifier (emulating DCC, bridge compensation and an
acquisition board; we used a model of the electrode previously published in a conference
proceedings - Brette et al, 2007). The electrode time constant is much slower than our typical
measurements in vitro (about 0.1 ms with sharp electrodes). The electrode kernel measured by
AEC underestimates the total resistance (49.4 MQ) instead of 55 MQ).

(c) With AEC, the subthreshold response is good and spikes are recorded, but in a filtered
version (which is to be expected since AEC only compensate for the bias induced by injected
currents).

(d) With DCC, no meaningful signal can be recorded (DCC 1: optimal setting of the sampling
frequency; DCC 2: higher setting). Increasing the DCC frequency leads to unstable oscillations
like in bridge (not shown). Thus, dynamic clamp recordings are possible with AEC when the
electrode time constant is large and no other technique can be used.

FIGURE 5

Impact of dendrites on electrode compensation

We simulated a morphologically reconstructed layer VI pyramidal cell (Contreras et al, 1997)
using Neuron, with passive properties (b-g) as in Destexhe and Pare, 1999), compatible with
whole-cell patch recordings: leak conductance g = 0.0155 mS/cm? (range tested: 0.015-0.03
mS/cm?), resting potential Viesc = -80 mV, intracellular axial resistivity R, = 70 Q.cm (Stuart and
Spruston (1998); range tested: 65-280 Q.cm), specific membrane capacitance cm = 1 pF/cmz2. In
the simulations of panel e, voltage-dependent Na+ and K+ currents were inserted in soma,
dendrites and axon (parameters in Destexhe and Pare, 1999). A high-resistance electrode,
modeled as a resistor and a capacitor, was located into the soma (Re = 80 MQ and t.=.1 ms). An
additional leak conductance of 10 nS was inserted in soma to model the impalement. White
noise and colored noise currents were injected through the electrode and AEC was used to
correct the recording. AEC and subsequent analysis were done offline using custom Python code
(http://www.di.ens.fr/~brette/HRCORTEX/AEC/) and the Brian simulator
(http://brian.di.ens.fr/). Recordings were sampled at 10 kHz (Neuron simulations use a 0.01 ms
integration time step).

(a) Dendritic tree of the simulated neuron, reconstructed from a layer VI pyramidal cell
(Contreras et al, 1997).

(b) The kernel of the cell, as measured by direct somatic injection (solid line) is not a pure
exponential function. Fitting to a sum of three exponential functions shows however that the
slower one accounts for 56 M() of the total resistance R = 57.8 M(QL. The electrode kernel (dashed
line) is concentrated on the first ms and is two orders of magnitude larger than the membrane
kernel on that time scale (note the change of scale in the upper part of the figure). The neuron
and electrode kernels were calculated separately, i.e., the neuron kernel was estimated with no
electrode resistance, and the electrode kernel was calculated without the neuron (therefore, it is
a single exponential function with time constant .1 ms); thus, these calculations did not rely on
AEC.

(c) The electrode kernel measured by AEC (solid line) was very close to the real one (dashed
line); the estimation gave Re = 81 M() instead of 80 MQ.

(d) White noise (1st half) and colored noise (214 half; time constant 5 ms) currents were injected
through the electrode, and the voltage compensated with AEC using the measured electrode
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kernel shown in (c). The AEC compensated trace (black line, foreground) is compared to real
somatic potential of the model (grey line, background).

(e) This figure shows a very challenging situation for electrode compensation: nonlinear
voltage-dependent conductances in the cell, electrode kernel estimated during spiking activity,
large dendritic contributions to the membrane kernel, high ratio electrode resistance /
membrane resistance, short membrane time constant and white noise injection. Voltage-
dependent conductances were inserted, so that the cell was able to produce action potentials. As
a result, the membrane resistance (and thus the time constant) at rest was halved (and even
more reduced during spiking), giving a large ratio Re/Rm = 2.5 (even larger during spiking
activity: Re/Rm). Suprathreshold white noise was injected through the electrode, inducing
spiking activity. The electrode kernel was estimated with the same suprathreshold white noise
injection, i.e., there were spikes during the estimation. The estimated electrode resistance was
82.6 MQ, which was very close from the same estimation with subthreshold white noise
injection (estimated Re = 82 MQ). The black trace shows the result of AEC compensation during
the injection (grey = real somatic potential). Even though the subthreshold activity looks filtered
by AEC because the fast dendritic contribution to the membrane kernel is large (10% at rest),
the technique does not act as a low-pass filter: measured action potentials look very similar to
the real ones.

FIGURE 6

Electrode nonlinearities

(a) Electrode nonlinearities can be measured intracellularly by running the AEC estimation
procedure with different levels of additional constant currents, and comparing the resulting
electrode kernels.

(b-c) The electrode resistance Re (sum of all values of the electrode kernel) is plotted vs. the
constant injected current for a very nonlinear electrode (b) and an essentially linear electrode
(c)- The slope of the linear regression measures the nonlinearity. The first electrode (b) should
be discarded.

(d) The voltage error resulting from electrode nonlinearities can be expressed as quadratic
function of the membrane depolarization, as shown on this plot for the electrode in (c) (solid
line, typical of about half the electrodes in our experiments), the electrode in (b) (mixed line)
and another nonlinear electrode (dashed line).

(e) We analyzed the spikes produced by 2 cells during injection of colored conductance noise in
vitro and 1 cell in vivo. Because of the dynamic clamp protocol, a very large negative current was
injected during spikes. Any error ARe in the estimation of the electrode resistance, which could
be caused by electrode nonlinearities during these large current injections, would result in an
error ARe*] in the voltage estimation. For these cells, the voltage peak was not very variable
(standard deviations 0.9 mV to 1.4 mV), and the estimated resistance errors from linear
regression between the injected current and the voltage at peaks were all smaller than 1 MQ,
which indicates an absence of fast nonlinearities. Electrode resistances ranged between 63 MQ
and 68 M() (estimated at rest with AEC).

FIGURE 7

AEC recordings in vitro and in vivo
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(a) This trace is an example of a kernel estimation in vivo: in this case, there were spikes
occurring during the white noise current injection, however the electrode kernel was very
similar to a previous one obtained in the absence of spikes (measured electrode resistances
were Re= 105 MQ in the absence of spikes and R.= 103 MQ in the presence of spikes).

(b) Temporal stability of the electrode properties in vivo for two regular spiking cells. The kernel
was estimated using 5 or 20s white noise current injections. In addition different constant
current levels (DC) were injected, preventing spiking activity during the estimation.

(c) Dynamic clamp protocol with 50 nS square conductance waves in vitro (alternation of
excitation and inhibition; scale bar: 5 ms; R, = 71 MQ). The recording with AEC is very close to
the prediction (from a passive model).

(d) Dynamic clamp protocol with fluctuating inhibitory and excitatory conductances using AEC,
in vitro and in vivo. Recordings are stable and action potentials are measured with high temporal
resolution.

(e) Dynamic clamp protocol with repeated injections of frozen synaptic conductance noise using
AEC, in a guinea pig visual cortical RS neuron in vitro (left) and in a cat visual cortical RS neuron
in vivo (right). The injected inhibitory and excitatory conductances, Ginibition and Gexgitation, identical
for each trial, are shown at the bottom. The injected current, lijeced is displayed on top of the
conductances, for only one trial; the corresponding response of the cell, Vi, is displayed directly
on top of the current. Subsequent V,, responses to the same conductance pattern are displayed above.
Conductance noise parameters: in vitro, geo = 15 nS, gio = 50 nS, s.d.. = 8 n§, s.d.i = 6 nS; in vivo, geo
=12nS, gio =57 nS, s.d.e =3 1S, s.d.i =7 nS.

FIGURE 8

Electrode kernels resulting from typical errors (Appendix A)

(a) Appearance of the estimated electrode kernel if bridge compensation was erroneously on
during white noise injection.

(b) If the size of the raw kernel is too big, the real-time estimation procedure might not follow.
Here, an example of raw kernel obtained in this case, with noise dominating the kernel after 20
ms. Note that this error might manifest itself differently depending on the real-time system used.

(c) If the chosen tail parameter is too small, the electrode kernel might not contain the whole
electrode response, which can manifest itself as the kernel not converging to 0 (dashed line) at
its last point. In this case, the correct kernel is shown as a thick line (note that the electrode has
an exceptionally slow component in this case).

(d) Ringing due to capacitance over-compensation is readily seen as a damped oscillation at the
level of the estimated kernel (left). While reducing capacitance neutralization, it is important to
carefully monitor that no residual oscillation remains in the kernel, i.e. that the kernel always
remains positive, as is the case for the kernel shown with the thick line (right), but not for the
two kernels shown with thin lines.

(e) Manifestations of fast non-linearities in the recording circuitry, when using an electronic
model cell+electrode. During conductance pulse injection in dynamic-clamp, artifacts (arrows)
can be seen during fast current transients (top panel). Under these recording conditions,
electrode kernels obtained using white noise injections of different amplitude (bottom panel;
solid line: 0.5 nA; dashed line: 1.5 nA) are not identical (arrows).
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(f) After replacing one element in the recording circuitry, there are no artifacts left during
conductance pulse injection. Under these recording conditions, electrode kernels obtained
during white noise injections of different amplitude (as in e) are identical (perfectly
superimposed on the graph). (Scale bars for e and f, top panels: vertical 5 mV, 100 nS, 2 nA,

horizontal 200 ms)
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