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Abstract 22 A challenge for sensory systems is to encode natural signals that vary in amplitude by orders of 23 magnitude. The spike trains of neurons in the auditory system must represent the fine temporal 24 structure of sounds despite a tremendous variation in sound level in natural environments. It 25 has been shown in vitro that the transformation from dynamic signals into precise spike trains 26 can be accurately captured by simple integrate-and-fire models. In this work, we show that the 27 in vivo responses of cochlear nucleus bushy cells to sounds across a wide range of levels can be 28 precisely predicted by deterministic integrate-and-fire models with adaptive spike threshold. 29 Our model can predict both the spike timings and the firing rate in response to novel sounds, 30 across a large input level range. A noisy version of the model accounts for the statistical 31 structure of spike trains, including the reliability and temporal precision of responses. Spike 32 threshold adaptation was critical to ensure that predictions remain accurate at different levels. 33 These results confirm that simple integrate-and-fire models provide an accurate 34 phenomenological account of spike train statistics, and emphasize the functional relevance of 35 spike threshold adaptation. 36 
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Introduction 40 To localize sound sources in the horizontal plane, mammals rely mainly on interaural time 41 differences (ITDs) at low frequencies. In cats, ITDs are smaller than 400 µs (Tollin and Koka, 42 2009) and  behaviorally just noticeable differences in ITD can be as small as 20 µs (Wakeford 43 and Robinson, 1974). The auditory system displays a number of specializations that reflect the 44 required precision of fine temporal processing (Oertel, 1999; Trussell, 1999; Yin, 2002). In 45 particular, in the cochlear nucleus (CN), low frequency bushy cells respond to acoustic signals 46 from the ipsilateral ear with submillisecond precision (Joris et al., 1994; Louage et al., 2005; Joris 47 and Smith, 2008). They project from both sides to binaural neurons in the medial superior olive 48 (MSO), which respond to coincident input spikes, making them sensitive to ITDs (Yin and Chan, 49 1990). One challenge faced by this system is to encode ITD over the enormous range of stimulus 50 intensities that the animals experience. Little data are available from MSO neurons, but 51 responses from its targets (particularly the inferior colliculus : (Yin et al., 1986), Fig. 3) suggest 52 that ITD tuning is surprisingly invariant to sound level. In response to tones, the response rate 53 and temporal coding in bushy cells is less sensitive to sound level than in the auditory nerve 54 (AN) (Joris et al., 1994, Recio-Spinoso, 2012). This also appears to be the case in response to 55 noise (discussed as “compression” in van der Heijden and Joris, 2009). For example, bushy cells 56 afford lower just noticeable differences for ITD discrimination, over a wider range of SPLs, than 57 AN fibers (van der Heijden et al., 2011).   58 As reported in many sensory pathways, neurons adapt to input statistics (Brenner et al., 2000; 59 Fairhall et al., 2001; Hosoya et al., 2005; Nagel and Doupe, 2006). This adaptation has been 60 mostly described in terms of firing rate. ITD processing is original in that adaptation is found in 61 the temporal responses of neurons. While previous works reported the effect of input level on 62 spike jitter and reliability in cochlear nucleus (e.g. Louage et al., 2005), here we analyze and 63 model the effect of input level on absolute timing  (Michelet et al., 2012) in bushy cells.  In order 64 to describe the transformation of a continuous acoustical signal into a sequence of precisely 65 timed spikes, we design a phenomenological model of CN responses that can predict every spike 66 at different input levels, with a single set of parameters. 67 In vitro, several groups have shown that it is possible to accurately predict the precise time of 68 spikes produced by a neuron in response to time-varying currents injected at the soma, using 69 simple integrate-and-fire models (IF) (Jolivet et al., 2008; Gerstner and Naud, 2009; Rossant et 70 al., 2010, 2011). In this paper we apply the same method to our CN in vivo single-unit recordings 71 and find that simple IF models cannot predict the responses because they are too sensitive to 72 level. We ask whether the addition of an adaptive threshold to our model could improve 73 prediction. Spike threshold – the membrane voltage above which a spike is triggered - varies and 74 depends on spike history (Azouz and Gray, 2000; Wilent and Contreras, 2005; Chacron et al., 75 2007). In vitro, the addition of a dynamic threshold to a simple IF model has been shown to 76 improve the prediction of cell responses to injected random currents (Jolivet et al., 2008; 77 Kobayashi et al., 2009; Rossant et al., 2010). In vivo, IF models with dynamical threshold can 78 successfully reproduce experimental data  in visual (Keat et al., 2001),  electrosensory (Savard et 79 al., 2011) and vestibular (Sadeghi et al., 2007) neurons. However, in the present study this 80 approach is not sufficient to predict spikes when the input level is varied. We show that a 81 threshold model with multiplicative spike-triggered adaptation (Brette, 2012) can accurately 82 predict the timing of spikes in response to acoustical inputs across a broad range of levels. While 83 the present work emphasizes the relevance of spike threshold adaptation, it also provides a 84 
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predictive model of bushy cell responses with very few parameters that can be used in studies of 85 the sound localization pathway at the systems level, e.g. as inputs to binaural coincidence 86 detectors. 87 
Material and methods 88 The data presented in this paper represent a subset of the data collected in (Louage et al., 2005, 89 2006). All procedures were approved by the KU Leuven Ethics Committee for Animal 90 Experiments and were in accordance with the National Institutes of Health Guide for the Care 91 and Use of Laboratory Animals. The experimental methods are described in detail there and are 92 only briefly summarized here. Pentobarbital anesthetized cats were placed in a soundproof 93 room. A sealed acoustic driver was inserted into one or both exposed ear canals and calibrated 94 with a 1/2 inch condenser microphone and a probe tube close to the eardrum. The trapezoid 95 body (TB) was exposed via a ventral approach to the skull base. All data were recorded with 96 glass micropipettes filled with 3 M NaCl. The neural signal was converted to spike times 97 referenced to the stimulus onset with a peak detection triggering circuit with an accuracy of 1 98 µs.  99 
 100 
Stimuli and data collection  101 The search stimulus was a binaural noise burst (duration 300 ms, repeated every 500 ms, 70 dB 102 SPL, bandwidth 40 kHz). When the activity of a single fiber was isolated, the excitatory ear was 103 determined. For each fiber encountered, a threshold tuning curve was obtained with a tracking 104 algorithm that provided spontaneous rate, characteristic frequency (CF), and threshold. Short 105 tone bursts at CF (duration 25 ms, repeated every 100 ms, 200 repetitions, rise-fall time 2.5 ms, 106 starting in sine phase) were then presented at increasing sound pressure level (SPL) in 10-dB 107 steps. Next, a rate-level function was obtained to a broadband Gaussian noise (1 s), repeated 108 every 1.2 s , five to ten repetitions). 109  110 After a fiber's basic physiological parameters and rate-level functions were collected, a 1-second 111 broadband noise (0.1-30kHz) with many repetitions was delivered, usually 35 to 100, to collect 112 at least 3,000 spikes. In some cases, subsequently a second, independent 1-second noise token 113 was similarly delivered. The first input level (overall level re 20 µPa) tested was usually 70 dB 114 SPL, the next levels were usually 50, 30, 80, 60, and 10 dB SPL. Because the time we could record 115 from a TB fiber was limited, for certain fibers not all levels were presented. 116  117 
Data selection 118 Only a subpopulation of the available recordings was used in our analysis. Fibers of the TB were 119 classified into different categories based on the shape of their post-stimulus time histogram 120 (PSTH) (binwidth 0.1 ms) to short pure tone bursts at CF at different stimulus levels (Louage et 121 al., 2005, 2006). We restrict our analysis to low-frequency fibers that show a phase-locked PSTH 122 (“PHL”) and which furthermore show the so-called “high-sync” property (Joris et al., 1994). The 123 exact selection criteria and resulting database are stated at the beginning of the Results section.  124 It was extensively discussed in previous papers (Joris et al., 1994; Louage et al., 2005; Joris and 125 Smith, 2008) that the vast majority, if not all, of these “high-sync” TB fibers are axons of the two 126 variety of bushy cells: both spherical and globular bushy cells (SBCs and GBCs, respectively). 127 
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Nevertheless, throughout the Results section we use the neutral term “TB fiber” to acknowledge 128 the fact that the anatomical identity is not known with certainty for any given fiber.  129 
 130 
 131 
Correlation analysis 132 In order to assess the synchronization properties of a neuron’s response to different 133 presentations of the same noise token at a single stimulus level, we construct the shuffled auto-134 correlogram (SAC) (Louage et al., 2005; Joris et al., 2006). Every possible trial pair is compared 135 (except comparisons of a trial to itself, Fig. 2A1): time intervals between all spikes of the first 136 train and all spikes of the second spike train are measured and tallied in a histogram (Fig. 2A2).  137 Since SACs are symmetric, only forward time intervals are considered. The resulting histogram 138 is then mirrored, yielding the SAC (Fig. 2A3). The SAC ordinate is normalized by ( ) 21  n n r Dτ− Δ  139 This factor eliminates the effect of average rate r , number of presentations n , choice of bin 140 width τΔ , and stimulus duration D . This scaling yields dimensionless bin values. The maximal 141 value of the SAC is referred to as the correlation index (CI, Fig. 2A3). Uncorrelated spike trains 142 result in a value of 1. A measure of the temporal precision is derived from the SAC by taking the 143 width of the main lobe where the values are half of the SAC peak. We refer to this measure, given 144 in ms, as half-height width (HHW, Fig. 2A3). 145 We use the same concept to analyze the effects of stimulus level on ongoing timing in TB as in 146 (Michelet et al., 2012).  Cross stimulus auto-correlograms  (XAC) are computed between the 147 responses of the same cell at two different stimulus levels. All possible pairs of trials between 148 the two levels are taken into account (Fig. 2B1). As XACs are not symmetric, both forward and 149 backward time intervals  are tallied (Fig. 2B2, B3). The XAC ordinate is normalized by 150 

1 2 1 2 n n r r DτΔ , where in and ir  are the number of presentations and firing rate of the ith 151 response.  If the responses to the lower level lead the responses to the higher level, the 152 correlogram peak will be shifted to the left . The lag is defined as the position of the main lobe 153 peak (Fig. 2B3). 154 
 155 
Peripheral model 156 The model chain, describing the mapping from sounds to spike trains in cochlear nucleus bushy 157 cells, is shown in Fig. 5A. The first element, shared by all the models we consider, is linear 158 filtering. It summarizes the linear filtering properties of the afferents to the cochlear nucleus and 159 of the neuron itself. It is characterized by an impulse response (Fig. 5A, auditory filter). 160 This impulse response is calculated by reverse correlation (RevCor). For a broadband noise 161 stimulus, the RevCor filter h(t)  is the average stimulus that elicits spikes (de Boer and de Jongh, 162 1978; Schwartz et al., 2006), that is, N

n
n 1

1
h(t) (t )

N
s

=

=  , where tn is the time of the nth spike, 163 
n(t )s

  is a vector containing the stimulus present in a temporal window preceding that spike, N  164 is the total number of spikes in the analysis. Based on visual inspection of the RevCors, we set 165 
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the analysis window to be 15 ms, i.e., we consider that impulse responses are shorter than 15 166 ms. 167 The neurons RevCors are first fitted using gamma tone functions (Patterson, 1994). The gamma 168 tone is a cosine carrier with a gamma envelope:  169 
 ( ) ( )( )3 0

0 0 0 0 ( ) exp cos 2 ( )
t t

GT t A t t f t t H t tπ θ
τ
− = − − − + − 

 
 170 

where   A  is a scaling factor, 0t  is a pure delay, τ  defines the temporal width of the gamma 171 envelope, 0f  is the center frequency of the carrier, θ  is a phase shift, and ( )H t  is the Heaviside 172 function. 173 Beside the simple gamma tone function, we also fit functions of which the carrier is a chirp, i.e.,  a 174 frequency modulated signal (Wagner et al., 2009; Fischer et al., 2011). We consider two types of 175 chirps. The first one is based on measurements reported in the auditory nerve of cats. Its 176 instantaneous frequency increases linearly with time (Carney et al., 1999), we refer to it as the 177 linear gammachirp linGC : 178 
 ( ) ( ) ( )3 0

0 0 0 0 0 ( ) exp cos(2 0.5 ² ) ( )lin

t t
GC t A t t f t t c t t H t tπ θ

τ
−   = − − − + − + −    

 179 
In the second one, proposed by (Irino and Patterson, 2001), the instantaneous frequency 180 saturates when t grows to infinity. We refer to it as the logarithmic gammachirp logGC : 181 
 ( ) ( ) ( )3 0

0 0 0 0 0 ( ) exp cos(2  ) ( )log

t t
GC t A t t f t t c log t t H t tπ θ

τ
−   = − − − + − + −    

 182 
In both linGC  and logGC  the additional parameter c characterizes the rate of the chirp. As the 183 instantaneous frequency  instf is defined as the temporal derivative of the phase, 0instf f ct= +  184 for linGC  and 0 /instf f c t= +  for logGC . Thus, 0f  can be seen as the starting frequency of the 185 chirp in the linear case, and as the frequency to which the carrier converges as t  grows in the 186 logarithmic case. 187 These functions are fitted to the RevCors in order to minimize the error  188 
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=

−  , where ( )g t  refers to either ( )GT t  or ( )GC t , N  is the number 189 of time points, M  is the number of parameters to fit, and 2
iσ  is an estimate of the variance of 190 the RevCor at time point  it across all presented trials.  191 We quantify the effect of stimulus level on the resulting parameters by computing the 192 percentage of change per dB, for each neuron with more than one stimulus level recorded. The 193 fitting procedure yields a set of fitted parameters at each level. For each parameter, we perform 194 a linear regression between the stimulus level in dB and the fitted parameter value. The slope of 195 this regression is the level sensitivity of the corresponding parameter. This slope is divided by 196 
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the mean parameter value across levels, and multiplied by 100 to yield the percentage of change 197 per dB. 198 Similarly to models of the auditory periphery based on RevCor filters (de Boer and de Jongh, 199 1978; Patterson, 1994), the input sound stimulus ( ) s t is processed by a FIR filter with an 200 impulse response k  that is the  truncated version (of length 15ms) of the fitted function: 201 
( ) * ( )x t k s t= , where *  denotes the convolution operator. The signal is then delayed by a certain 202 amount of time Δ , to compensate for delays introduced by subsequent stages of the model. 203 

 204 
Spiking neuron models 205 The first phenomenological spiking neuron considered (Fig. 5B)  is the leaky integrate-and-fire 206 (LIF) neuron, which has been shown to efficiently model responses of a wide class of neurons 207 (Jolivet et al., 2004; Gerstner and Naud, 2009). The output x of the auditory filter is first half-208 wave rectified and compressed by a power law: ( ) [ ( Δ) ]  with  ccI t x t += −  chosen between 0 209 and 1. The resulting signal I(t) is then fed to the LIF. The subthreshold membrane voltage 210 dynamic of a LIF neuron is described by a first-order linear differential equation:  211 
 ( ) 

( ) ( )m
m m

dV t
V t I t

dt
τ = − +  212 

where ( )mV t  is the membrane voltage, mτ  is the membrane time constant, and ( )I t  is the input 213 current. The neuron fires when ( )mV t  exceeds a fixed threshold TV . After firing, the membrane 214 voltage is reset to 0: 0mV →  and the neuron cannot fire during a fixed refractory period r. The 215 second spiking model considered is a variation of the spiking model for stimulus level-invariant 216 processing recently proposed in (Brette, 2012) (inset Fig. 6E). We call this model the adaptive 217 threshold model (ATM). As before, the output x of the filter is half-wave rectified but not 218 compressed: ( ) ( Δ)I t x t += − . Next, ( )I t  is directly compared to a threshold ( ) TV t  which can 219 vary in time. The dynamics of the threshold is described by a first order differential equation, 220 which linearly depends on ( )I t : 221 
 ( )( ) 

( )T
T T

dV t
aI t V t

dt
τ = −  222 

where TV  is the time varying threshold, Tτ  is the threshold time constant, and a  quantifies the 223 amount of subthreshold adaptation of TV . A spike is fired if the input exceeds the threshold: 224 
( ) ( )TI t V t> . After firing, the threshold is reset:    T TV Vβ α→ +  and the neuron cannot fire 225 during a fixed refractory period r. This reset consists of two parts, an additive part α  and a 226 multiplicative part β . In (Brette, 2012), it was proven that a purely multiplicative reset  ( 0α = ) 227 yields a level-invariant neuron model, i.e., after a transient time, spike timing and firing rate do 228 not change with stimulus level. In order to account for some level sensitivity seen in the 229 recorded responses, we include an additive term α . In some cells, adding a second time 230 constant to the process yields better results. To do so, a second threshold equation with the 231 
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same reset mechanism but different parameter values is introduced, and the condition for firing 232 is then ( ) ( )1 2 ( )T TI t V t V t> + . The inclusion of a second time constant does not change the 233 theoretical properties of the model (Brette, 2012). Note that, contrary to the LIF, the ATM 234 directly compares the input ( )I t  with the threshold. We made this choice because using ( )V t  235 as input to the threshold equation would not yield different results (Brette 2012), while adding 236 an extra parameter to the model. 237 Having an adaptive threshold is not a new concept (Brandman and Nelson, 2002; Chacron et al., 238 2003; Kobayashi et al., 2009). Nevertheless, in those previous models, the threshold did not 239 adapt to the subthreshold potential and the reset was purely additive. This model can be seen as 240 a special case of the ATM with a 0= , β 0= , and α 0≠ . For the sake of comparison we also test 241 this simple adaptive model. 242 
Model fitting procedure 243 There are several parameters to find in order to optimize the two models: mτ , c , TV , r, and Δ   244 for the LIF model, and  Δ , Tτ , a , α , β , r for the adaptive threshold model. The model fitting 245 approach employed for the optimization is similar to the one introduced in (Rossant et al., 2010, 246 2011). In order to quantify the similarity between two single spike trains, we first use a measure 247 that takes into account the precise timing of spikes given a temporal window δ , the gamma 248 factor Г (Jolivet et al., 2008): 249 
 22

1 2
coinc exp exp

exp exp model

N N r

r N N

δ
δ

  −
Γ =   − + 

 250 
where expr  is the mean firing rate of the experimental response,  coincN  is the number of 251 coincidences between the model and experimental trains computed within a time window δ , 252 
expN  and modelN  denote the number of spikes in the experiment and model spike train, 253 respectively. 2 exp expN rδ  is the expected number of coincidences generated by a Poisson process 254 with rate expr . The first term in brackets is a normalization factor so that the maximum of Γ  is 1. 255 

0Γ =  means that there are no more coincidences than expected by chance whereas 1Γ =  256 means that the model prediction is perfect, at temporal resolution δ . For each cell,  there exists 257 a maximum for Γ  at a given δ , maxδ (0.5±0.16 ms for the entire population). For the 258 optimization fitness, we set maxδ δ=  for each cell . All the optimization results are consistent as 259 long as the chosen δ  remains in the vicinity of maxδ , which can be seen as the optimal temporal 260 resolution to compute Γ . If they differ too much from maxδ (more than a millisecond), the 261 optimizations fail. 262 The model only outputs one spike train per frozen noise, since it is deterministic, whereas the 263 data contains several repetitions of the same frozen noise. Therefore, we calculate the gamma 264 factor ( ),Г model data  between the model and the data as the mean Г  between the model 265 
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train and each train of the data, i.e., ( )
1

1
,

n

k
k

Г model data
n =

= Γ , where kΓ  is the gamma factor 266 between the model train and the k th train out of n  trials. Another useful metric that we will use 267 is the intrinsic gamma factor of a set of repeated trials, ( )
1 1

2

( 1)

n n

int ij
i j i

Г data
n n = = +

= Γ
−  , where 268 

ijΓ  is the gamma factor between the trains i and j out of  the n trials. It quantifies the 269 reproducibility of responses. 270 We will use a fitness criterion that takes into account both the quality of spike timing prediction 271 and of firing rate prediction: 272 
 ( ) ( ) ( )

( )
( ) ( )

( )
,

,
int

int

Г model data Г data FR model FR data
fitness model data

Г data FR data
λ

− −
= +  273 

In theory the difference in firing rates is taken into account in the gamma factor. For some cells 274 the regularization factor helped the optimization algorithm to quickly find a relevant parameter 275 subspace. A regularization weight λ  of  0.2 was empirically found to give fast convergence. The 276 final results were not sensitive to this value. The optimization uses an evolution algorithm called 277 CMAES (Hansen and Ostermeier, 2001). The implementation on Graphical Processing Units 278 (GPU) is described in (Rossant et al., 2010, 2011). All the neuron simulations and optimizations 279 were performed using the Brian simulator (Goodman and Brette, 2009) for spiking neuron 280 models, the Brian Hears toolbox for auditory filtering (Fontaine et al., 2011) and the Playdoh 281 optimization toolbox (Rossant et al., 2011). All simulations were performed with a sampling 282 frequency of 65 kHz. 283 
 284 Training and testing were done on distinct subsets of the data. When only one 1-second stimulus 285 noise was available, the first 500 ms were used for training, whereas the last 500 ms for testing. 286 To discard the transients when testing, the simulation started at 400 ms, but the testing 287 performances were computed from 500 ms on. When two 1-second stimuli were available, the 288 first stimulus was used for learning and the other one for testing. To compute the fitness, the 289 first 50ms were discarded. Two learning protocols were used: equal level learning and multiple 290 levels learning. In equal level learning, a model is optimized for each level of a cell, yielding as 291 many fitted models as there are levels. The testing is then done at each level using the model 292 learned for this level. In multiple levels learning, only one model is learned for each cell. All the 293 responses from the learning data set are concatenated with 100 ms silence between successive 294 responses, and the fitness is computed over the whole response. The testing is then performed 295 on every single level of the cell using the same learned model. To compute correlations in the 296 recorded dataset, spikes from different trials are used, i.e. 50 trials of a 1-second stimulus. 297 Because our models (LIF or ATM) yield identical trains for different trials  we used a 50-second 298 fresh noise to obtain a sufficient number of spikes and computed the cross-correlation on the 299 modelled data at different levels. 300  301  302 Different metrics were used to compare model and recorded responses. In particular, 303 differences between firing rates, HHWs, CIs, response lags, as well as between ( ),Г model data  304 and ( )intГ data , were quantified using an explained variance (EV) measure defined as: 305 
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1 /err totEV SS SS= −  where the square of the error ( )ˆ ²err i i
i

SS y y= −  and the empirical 306 
variance ( )²tot i

i

SS y y= −  with 1/
n

i
i

y n y=  . Here, iy  is the associated metric to the recorded 307 response i  and  iŷ  the metric associated to the corresponding modeled response. Note that 308 when the fit is really bad the variance of the error can be larger than the empirical variance, 309 resulting in a negative explained variance. 310 
 311 
Stochastic adaptive threshold model 312 In order to account for stochasticity in the data set, noise is added to the model. This is simply 313 done by adding a white noise term to the threshold equation. The standard deviation of the 314 noise scales linearly with stimulus level, so that the signal-to-noise ratio is constant. 315 
 ( ) ( ) ( )( ) 

2 ( )T
T T T T

dV t
aI t V t I t t

dt
τ σ τ ξ= − +  316 

where ξ(t)  is gaussian noise, Tσ  is the level-independent standard deviation of the noise, and 317 
I (t)  is a running average of the input: ( )

( )T

dI t
I t

dt
τ = − +I(t). We set  Tτ   to 20ms; Tσ  is 318 optimized so that the main lobe of the model response SACs at different levels match the main 319 lobe of the  SACs of the corresponding recorded data at the same levels (using a mean square 320 error criterion). When the threshold has two dynamic equations (two time constants), the same 321 noise is added to both of them. 322 

 323 
Linear non-linear Poisson model 324 We compared our stochastic model with a popular model, the linear-nonlinear-Poisson (LNP) 325 model (Chichilnisky, 2001; Pillow et al., 2005). Similar to the two models previously introduced, 326 the input to our LNP model is the filtered sound stimulus. This input is passed through an 327 instantaneous nonlinear function f , which accounts for non-linearities such as rectification and 328 saturation. The instantaneous spiking probability in response to a stimulus  s   is as follows: 329  ( )( ) ( )| ( * Δ )P spike t s f k s t= −  330 
where ( ) s t is the stimulus, Δ  a time delay, k  the auditory filter impulse response estimated by 331 reverse correlation, *  denotes the convolution operator, and f  is a non-linear function to 332 optimize. Spikes are produced using an inhomogeneous Poisson process. To avoid non-realistic 333 bursting, a refractory period was set to 1 ms which is smaller than the shortest characteristic 334 period (1/CF) considered. 335 Using Bayes' rule, the non-linearity function ( ) ( | ) f s P spike s= can be rewritten as 336 

( ) ( | ) / ( )f s P s spike P sα= . The prior P(s) can be estimated using a Gaussian kernel density 337 
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estimate from the stimulus ensemble. Similarly, ( | )P s spike  was estimated from the spike-338 triggered stimulus ensemble, i.e., the stimulus values at spike times. α  was optimized so that 339 the firing rate of the model fit the firing rate of the cell.  340 
 341 
 342 
Predicting spike count reliability 343 We want to relate the spike count reliability of a response to the distance between the input 344 stimulus and the threshold of a model neuron. To do so, we use a standard definition of the  345 reliability of a response during a stimulus event. First, events are defined as time intervals where 346 the input to the cell is positive, i.e. each positive “chunk” of the filtered sound. Because the cell's 347 input has a characteristic period induced by the filtering, events are well separated in time (see 348 Fig. 12 A). When a frozen noise is presented n times to a neuron, the reliability for event i is 349 defined as the number p of trials in which the cell spiked during this event divided by the total 350 number of trials, /iR p n=   (Mainen and Sejnowski, 1995). An event reliability of zero means 351 that no spike has been fired whereas a value of one means that a spike was fired in every trial.  352 The distance between the input I(t) and the dynamic threshold at the ith event is given by the 353 difference between the peak magnitude of I(t) in the time interval defining the event i and the 354 value of the average dynamic threshold over all trials <V(t)> at the beginning of the event i (e.g. 355 in Fig. 12A for the stochastic ATM), The distances and peak magnitudes are normalized with 356 respect to the mean stimulus level. Distance, peak magnitude, and reliability R, are computed for 357 every event, for a given neuron and input level. The resulting pairs ( ,ix  iy ) (reliability-distance 358 or reliability-peak magnitude) are fitted, using a least-square method, to the sigmoidal function 359 
 ( ) 0.5 1 erf ( )

2

x u
f x

σ
− = + 

 
, where erf is the error function. This is the cumulative distribution 360 function of a normal distribution with mean u  and variance ²σ . For each reliability value ix , 361 this procedure yields an estimation ( )if x  of the distance or the peak magnitude (see e.g. Fig. 362 12B). To quantify the quality of the fit, the coefficient of determination is computed as 363 

2 1 /err totR SS SS= −  , where the fit squared error ( ( ))²err i i
i

SS y f x= −  and the total empirical 364 
variance ( )²tot i

i

SS y y= −  with 
1

1/
n

i
i

y n y
=

=  . 365 
 366 
Spike effect on spiking probability 367 If an adaptive threshold is involved in the spike generation process, the firing probability of 368 spikes at time t should depend on the occurrence of preceding spikes at times 0t t< . To test 369 whether such an effect is present in the TB responses, we calculate, for every stimulus event i 370 generating at least one spike, probabilities of firing depending on spike history. The procedure is 371 illustrated in Fig. 7A where events are the intervals between dashed lines. We first calculate the 372 
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probability that a spike is generated at time t  ( t in event i) given that a spike occurred in a given 373 past temporal window Δ  (green in Fig. 7A): 374 
 ( ) 11

1 1
10 11

   event |  Δ ,i N
P P spikeat t i spikein

N N→ = ∈ =
+

 375 
where 11N  is the number of trials in which there was a spike both in the preceding window  376 
Δ [ , ]a bt t t t= − −  and in event i (t represents the beginning of the event , green box in Fig. 7 A.  377 

10N  is the number of trials in which there was a spike in the preceding window Δ  but not in 378 event i. Similarly, we define the probability for the ith  event that a spike is generated given that 379 no spike previously occurred in Δ : 380 
 ( ) 01

0 1
00 01

   event |    Δ .i N
P P spikeat t i no spikein

N N→ = ∈ =
+

 381 
01N  is the number of trials in which no spike occurred in Δ  but a spike occurred in event i, and 382 
00N  is the number of trials in which there was neither a spike in Δ  nor in event i. For a given 383 event, if spikes that occurred in the past in Δ  have a suppressive effect on subsequent spikes, 384 then 0 1

iP→ > 1 1.
iP→  In order to discard possible effects of the refractory period, for a given event 385 starting at time t, spikes occurring between t and t-r , where r  is the refractory period, are 386 discarded (gray box in Fig. 7A). The refractory period is defined as the shortest interval where 387 the inter-spike interval histogram exceeds 5% of its maximum (Fig. 7B). This procedure is 388 repeated for every event of every response. For visualization (Fig. 7C and D), all points (389 

0 1 1 1,i iP P→ → ) are used to estimate the joint probability density via a 2-dimensional kernel density 390 estimator using a Gaussian kernel. To ease visualization, each column is normalized to its 391 maximum. 392 
 393 
Results 394 In this study we model low-frequency cochlear nucleus neurons that are highly synchronous 395 (high-sync), i.e., cells that generate spikes that are precisely timed to the fine structure of  396 sounds (Joris and Smith, 2008). From visual inspection of the raster plots (e.g. in Fig. 1), we 397 define the following selection criteria: we select low-frequency cells (CF<1000Hz) with at least 398 one level for which the responses are reliable enough (CI>5). All these cells were classified as 399 PHL. Based on the PSTH and recording location the recordings were likely from axons of bushy 400 cells (Joris et al., 1994). The final data set used in this study contained 24 cells, 4 of which were 401 recorded at a single SPL, 8 of them at 2 SPLs, and 10 at more than 3 SPLs. Stimulus levels were 402 separated by at least 20 dB. For all cells at least one 1-second frozen noise was presented 403 between 30 and 50 times. When time allowed (n=10), another 1-second frozen noise (a different 404 token than the first one) was presented, with the same number of repetitions 405  406  407 
 408 
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High-sync response properties across stimulus levels 409 From the autocorrelation analysis (Fig. 2A, see also Material and Methods), we estimate the 410 temporal precision (Fig. 3A) and the correlation index (CI) (Fig. 3B) of responses at each level. 411 Connected points correspond to the same cell at different levels. First, we note that the 412 responses are very precise: half-height width (HHW) is smaller than 1 ms (population median is 413 plotted in red as a function of level in Fig. 3A)  for almost all cells and all levels. Second, as was 414 shown in (Louage et al., 2005), individual HHWs and correlation indexes tend to decrease with 415 increasing level .  Fig. 3C shows the firing rate as a function of stimulus level for all cells and the 416 population median (in red). The levels range from 40 dB to 110 dB, which corresponds to a 417 change in input pressure by a factor of about 3000. Thus the firing rate responses exhibit strong 418 compression. 419 Another standard measure of the temporal precision of the responses is the intrinsic gamma 420 factor intГ  (Jolivet et al., 2008), which quantifies the coincidences between responses across 421 trials, at a given temporal resolution δ .  0intГ =  means that there are no more coincidences 422 between trials than expected by chance for a Poisson process and 1intГ =  means that all the 423 trials are identical at the given time resolution. Fig. 3D shows intГ  for all cells and levels, 424 computed at resolution δ  = 0.5 ms and the population median (in red). This figure mirrors the 425 trend seen in Fig. 3A, that is, the temporal precision of responses is enhanced at higher levels. 426 A standard measure of spike count reproducibility is the Fano factor (FF), defined as the 427 variance of spike count divided by its mean. It equals 1 for a Poisson process. We computed the 428 average FF over a sliding window of 30 ms, for every cell and level in our dataset (Fig. 3E). The 429 population median as a function of level is shown in red. Similarly to what has been reported in 430 various sensory systems (auditory system (Young and Barta, 1986; Avissar et al., 2007), and 431 other systems (Berry et al., 1997; de Ruyter van Steveninck et al., 1997)), the TB responses 432 exhibit sub-Poisson properties (FF<1), that is, responses are more reproducible than for Poisson 433 processes. The FF decreases as the stimulus level increases. 434 As the high-sync cells - presumably bushy cells - convey temporal information to binaural cells 435 sensitive to ITD, it seems functionally useful that their responses be as insensitive to stimulus 436 level as possible. In other pathways, an often observed effect of stimulus level on spike trains is a 437 temporal shift, with  shorter spike latency at higher level (Gollisch and Meister, 2008). If this 438 effect occurred for the monaural inputs of the binaural cells, then the ITD tuning of binaural cells 439 would depend on interaural level differences (ILD) (Brette, 2012). We measured this temporal 440 shift as a function of stimulus level by calculating the XAC between the responses at a given SPL 441 (Fig. 2B, see Material and Methods) and the responses at a reference level (chosen as 70 dB 442 when available, 60 dB or 80 dB otherwise). The temporal shift of the cross-correlogram peak 443 characterizes the lag between the corresponding responses (Fig. 2B3). The results are shown in 444 Fig. 3F where it can be seen that, except for one fiber, the variation of the response lags hardly 445 exceeds 200 µs, while stimulus level varies by more than 40 dB. In Fig. 3G, the same results are 446 shown in cycles, i.e., temporal lag multiplied by the CF of the cells. The sensitivity of each cell, 447 defined as the slope of the linear regression of the lag/SPL relationship, is plotted in Fig. 3H in 448 µs/10dB and in Fig. 3I in cycle/10dB. It appears that spike timing in these cells is not very 449 sensitive to input stimulus level (median = 16µs/10dB in Fig. 3H, = 0.9x10-2cycle/10dB in Fig. 450 
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3I) when considering the natural range of ILDs. Indeed, at these frequencies, the maximum ILD 451 is about 5 dB (Tollin and Koka, 2009), yielding a median lag of 8 µs (see Discussion). 452 
 453 
Reverse correlation analysis 454 We estimated the reverse correlation filters of the neurons from responses to broadband noises 455 using a reverse correlation (RevCor) technique (see Materials and Methods). Examples of 456 RevCors at 6 different SPLs for the same neuron are shown in Fig. 4A. Note that the stimuli used 457 for the analysis were normalized to have unit power so that the amplitudes of the resulting 458 RevCors have the same order of magnitude. The RevCors do not vary much with stimulus level. 459 This can be quantified for each neuron by calculating the maximum of the cross-correlation 460 function between every pair of RevCors at different levels, and by averaging across all possible 461 level pairs. On average, the RevCors of a cell at different levels are highly correlated with each 462 other (0.91±0.02), indicating that the RevCor shape does not vary much with input level in most 463 of the cells. 464 We fitted the RevCors to functions with gamma envelope and different carriers, chirping and 465 non-chirping (see Materials and Methods).  The RevCors were better fit by linear or logarithmic 466 gammachirps than by gammatones (Mann-Whitney U test, P<0.02 in both cases). This finding is 467 consistent with previous studies in the cochlear nucleus of barn owls (Wagner et al., 2009; 468 Fischer et al., 2011) or in the auditory nerve of cats (Carney et al., 1999). We found no significant 469 difference in estimation error between the logarithmic chirp function and the linear one 470 (median linear chirp ²χ =0.043, median logarithmic chirp ²χ =0.044, P=0.42, Mann-Whitney U 471 test) . Fig. 4B shows the linear gamma chirp functions fitted to the RevCors of Fig. 4A. 472 To further quantify the effect of stimulus level on the RevCor shapes, we analyzed the 473 parameters of the fits (Fig. 4 C,D, and E). The left column shows the envelope widths τ  (C), 474 starting frequencies of the chirps 0f  (D), , and gliding slopes c  (F), for every cell and every level 475 as a function of their CF. Each cell is represented by a shape (circle, square, pentagon, and 476 triangles with different orientation) and connected points correspond to the same cell at 477 different levels. Level is color-coded for each neuron with the darkest color for the lowest level 478 and the brightest color for the highest level. The envelope width τ  is inversely correlated with 479 CF (mean: 0.88 ms, regression -10-4 ms/Hz x+1.36ms, r = -0.55, p<10-5). The starting frequency 480 of the chirp is positively correlated with CF (mean: 633 Hz, regression: 0.8 x+261 Hz, r = 0.66, 481 p<10-8).  The glide slope c  is not correlated with CF (mean: -0.05 kHz/ms, regression 3×10-5 482 kHz²/ms x -0.06 kHz/ms, r = 0.08, p<0.53), neither is the phase (mean: 0.62 cycle, regression: 483 8×10-5 cyc/Hz x+0.58 cycle, r = 0.06, p = 0.61) 484 In order to quantify the effect of stimulus level on parameter values, we plot the percentage of 485 change per dB, relative to the average value of the parameter (Fig. 4 C,D, and E, right column, see 486 Materials and Methods). For most of the cells, the effect of stimulus level is small. The level 487 sensitivity of τ  is small and negative (mean % of change/10dB = -02.5+-5 %), the sensitivity of 488 

0f  is also small but positive (mean % of change/10dB = 5+-5%).  The sensitivity of the gliding 489 slope is higher due to one outlier (mean % of change/10dB = 26+-72%) but overall is also 490 mainly level-independent, as reported previously for AN fibers (Carney et al., 1999) and basilar 491 
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membrane (de Boer and Nuttall, 1997), but see (Recio-Spinoso et al., 2009). The level sensitivity 492 of the phase θ  is small and around zero (mean % of change/10dB = 3+-19%). 493 From these observations, we can conclude that the stimulus level has little effect on the shape of 494 the RevCors. For the rest of this study, the filter used in the model of each neuron (Fig. 5A) is the 495 linear gammachirp function fitted to the RevCor obtained at a given reference level. This 496 reference level is 70 dB when available (n=16), 60 dB (n=1) or 80 dB (n=1) otherwise. 497 
 498 
Equal level learning with a simple integrate-and-fire model 499 We first study the predictive power of a simple spiking neuron model, a LIF model with fixed 500 threshold and compression (Fig. 5 A and B, see Materials and Methods). Learning and testing are 501 done at the same level, but with different stimuli. That is, for each cell, there are as many fitted 502 models as levels. Since this simple LIF model is deterministic, it produces the exact same spike 503 trains in response to a given stimulus in all trials, while the responses are variable in the data. 504 The model is optimized so that 1) the spike train produced by the model is maximally coincident 505 with the spike trains in the data, at a resolution of 0.5 ms, and 2) the firing rate of the model is 506 similar to the average firing rate of the data (Fig. 5 A). Fig. 5C shows the responses of a cell at 507 two different levels (dots) and the two spike trains produced by the fitted model (red), on a test 508 stimulus - i.e., a different stimulus was used to fit the model. The model appears to predict spike 509 times with good accuracy in this example. We note that the model misses a few volleys of spikes, 510 especially at the lower level. There is about one volley of spikes for each characteristic period, 511 but the firing rate of the cell is lower than the characteristic frequency (CF=462Hz, firing rate 512 =180Hz for 50dB and 240Hz for 70dB). Thus, on any given trial, the cell does not fire on each 513 period of the stimulus, and the same is true for the model. 514 We now examine the prediction performance on the whole population, for every neuron and 515 every level (Fig. 5D, E). Each situation corresponds to a specific set of parameter values. Fig. 5D 516 shows a very good agreement between the model firing rate and the firing rate of the data 517 (correlation coefficient 0.91R = , explained variance 0.62EV = ). Fig. 5E shows that spike 518 timing is also well predicted: the gamma factor between model spike trains and data spike trains 519 

( ),Г data model  is close to the intrinsic gamma factor of the data ( )intГ data  ( 0.88R = , 520 
0.64EV = ). The statistics of the resulting parameters are shown in Table 1 for all cells at all 521 levels.  522 

 523 Parameter  mτ  c  TV   Δ  r Initial range (0.05ms, 20ms) (0, 1) (0.01, 15) (-2ms, 2ms) (0.1ms, 10ms)Result, mean±SD 1.2±0.8 ms 0.55±0.16 0.95±0.92 -0.05±0.26ms 2.5±1.6ms Table 1: Fitted parameter values for the LIF model learned at single stimulus levels (n=24). 524 
 525 
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As we previously noted, there is one set of parameter values for each level. In particular, the 526 fitted values depend on level. Fig. 5F and G show how the spike threshold TV  and the 527 compression exponent depend on level. We note that the spike threshold increases steeply with 528 stimulus level. 529 
Predicting responses across levels 530 We now consider the more realistic case where there is a single set of parameter values for each 531 cell, regardless of the stimulus level. That is, the model must predict the cell's responses to all 532 stimuli, with no a priori knowledge of the stimulus level. The learning set consists of 533 concatenated responses at the available stimulus levels, separated by silent periods of 100 ms 534 (see Materials and Methods). The model is fitted on this learning set and tested at each level, 535 with different stimuli. 536 In this new condition, the fixed threshold model performs poorly (Fig. 6). An example is shown 537 in Fig. 6A, with the responses of the fitted model at 6 different levels (green) superimposed on 538 the cell's responses. In this example, the model does not fire at the lower levels (40 dB and 50 539 dB). It can be seen in Fig. 6B that the model (green) fires more than the cell (blue) at higher 540 levels and less than the cell or not at all at lower levels. A second observation is that the model 541 tends to fire too early at higher levels and too late at lower levels. This is shown quantitatively in 542 Fig. 6C, where the lag of the responses with respect to a reference stimulus level of 70 dB is 543 shown for the model and for the cell. 544 The reason for this poor performance is suggested in Fig. 5F: to correctly predict responses 545 across levels, the spike threshold must increase with level. Fig. 6D illustrates what happens 546 when the spike threshold is fixed. When the stimulus level increases, the threshold (red) is 547 crossed earlier and therefore spikes are produced earlier. In addition, previously sub-threshold 548 events may become supra-threshold and new spikes may appear. Conversely, when the stimulus 549 level decreases, spikes are produced later and a few may disappear. 550 From these considerations, we conclude that the threshold should adapt to the input in order to 551 reduce the effect of level. Our starting point is the adaptive threshold model (ATM, inset Fig. 6E) 552 recently proposed in (Brette, 2012) that has level-invariant responses, both in terms of spike 553 timing and firing rate. This model is based on the observation that, to produce level-invariant 554 responses, scaling the input should leave the crossing points unchanged (Fig. 6E). This 555 constraint implies that the threshold should depend linearly on the input, and the increase in 556 threshold following a spike must be multiplicative, i.e., it must be proportional to the threshold 557 value at spike time. In order to take into account deviation from complete level invariance, an 558 additive term is added to the reset (see Material and methods).  559 When the same single set parameter optimization procedure is applied to this adaptive model, 560 the prediction performance across levels drastically improves (red line Fig. 6A and F). Both the 561 firing rate (Fig. 6B, red) and spike timing (Fig. 6C, red) are accurately predicted across level. This 562 model has only one more parameter than the LIF model (6 parameters vs. 5), and therefore this 563 drastic increase in performance is not simply the result of an increased complexity. 564 If a spike-dependent adaptive process were at play, as opposed to e.g. mechanical compression 565 in the cochlea or synaptic depression, the firing probability of spikes at time t should depend on 566 
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the occurrence of preceding spikes at times 0t t< . Let us define events as time intervals where 567 the input to the model cell is positive. To test whether such an effect is present in the TB 568 responses, we calculate, for every stimulus event i generating at least one spike, firing 569 probabilities depending on spike history (see Materials and Methods). First, we calculate the 570 probability 1 1  iP→ that a spike is generated at time t  ( t  in event i) given that a spike occurred in a 571 given past temporal window Δ  (green box in Fig. 7A). Second, we compute the probability 0 1
iP→  572 for the ith event that a spike is generated given that no spike previously occurred in Δ . For a 573 given event i, if spikes that occurred in the past in Δ  have a suppressive effect on subsequent 574 spikes, then 0 1

iP→ > 1 1.
iP→  In order to discard possible effects of the absolute refractory period, for 575 a given event starting at time t, spikes which occurred between t and t-R, where R is the 576 refractory period, are discarded (gray box in Fig. 7A). The absolute refractory period is defined 577 as the shortest interval where the inter-spike interval histogram exceeds 5% of its maximum 578 (Fig. 7B) yielding 1.4±0.4ms for the population.  This procedure is repeated for every event of 579 every response, and we plot the 2-dimensional density 1 1,

iP→  0 1
iP→ for two different time 580 windows Δ . The first one is Δ [ , ]t t CP= − , where CP is the characteristic period CP of the 581 neuron and t is the starting point of the event (Fig. 7C). The second one is one period earlier: 582 

Δ [ , 2 ]t CP t CP= − −  (Fig. 7D). We can see in Fig. 7C that 1 1
iP→  is significantly lower than 0 1

iP→  583 (most of 1 1
iP→  falls under the diagonal), which is not the case in Fig. 7D. This shows that spikes 584 have a suppressive effect on subsequent spikes for a time of about one characteristic period, and 585 that this effect is not due to the refractory period. 586  587 

Population analysis of multiple level models  588 Fig. 8 shows the testing performance of three different models on the entire population, when 589 there is a single set of parameter values for all stimulus levels for each cell, i.e., the learning set 590 consists of concatenated responses at all stimulus levels. Models are tested at all levels on all 591 cells. The first row shows the performance of the fixed threshold LIF model. As expected from 592 the aforementioned considerations, the model tends to have a higher firing rate than the cells at 593 high levels (Fig. 8A1, bright colors) and lower firing rate at low levels (dark colors), yielding 594 poor prediction performance ( 0.87R = , 1.51EV = − ). In fact, the model responds only for 61% 595 of the stimulus conditions. As a consequence, the similarity between modeled and recorded 596 spike trains is low on average (Fig. 8B1, 0.72R = , 0.1EV = ). The lag of the responses with 597 respect to a reference level (generally 70dB) is plotted in Fig. 8C1. The results on the entire 598 population follow the trend shown in Fig. 8: the responses of fixed threshold models tend to lead 599 the recorded responses at high level and to lag behind them at low level, yielding poor 600 prediction performance ( 0.64R = , 8.25EV = − ). 601 In the second row, we show the results for a simpler adaptive threshold model (Brandman and 602 Nelson, 2002; Chacron et al., 2003; Kobayashi et al., 2009), where a 0= , β 0= , and α 0.≠  Note 603 that we do not include compression. That is, adaptation is only triggered by spikes, and the 604 threshold increases by a fixed quantity after a spike. We refer to it as simpler ATM (sATM). 605 Although it performs better than the fixed threshold model, it still shows the same problems: the 606 
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firing rate is too high at high level and too low at low level (Fig. 8A2, 0.84R = , 0.06EV = ), and 607 spike timing prediction is poor (Fig. 8B2, 0.82R = , 0.28EV = ), because it tends to fire too 608 early at high level and too late at low level (Fig. 8C2, 0.61R = , 1.92EV = − ). 609  610 In the third row, we show the results of the purely level invariant model (Brette, 2012) where a≠ 611 0 , β ≠ 0 , and α = 0.  As expected, the responses are the same across levels. The firing rates do not 612 vary with intensity (the points on Fig.8A3 are placed on a horizontal line for each cell). Because 613 spike timing is also level invariant, the lag is zero for all levels compared to the reference level 614 (Fig.8C3). Even if this model is capable of predicting the response to some degree (Fig.8B3), 615 those results confirm the fact that a level-dependent term must be included (α ≠ 0). This is done 616 in  our ATM model, for which the results (fourth row) show a very good match between the 617 firing rate of the model and the firing rate of the recorded responses (Fig. 8A4, 0.97R = , 618 
0.92EV = ). The model also shows very good performance in predicting the spike trains (Fig. 619 8B4, 0.95R = , 0.68EV = ). Fig. 8C4 shows that the lag of the responses as a function of level is 620 very similar between the model and the data ( 0.82R = , 0.58EV = ), with a regression line 621 close to the diagonal. These results show that the ATM is better at predicting responses across 622 level than a model with fixed threshold, even though the fixed threshold model included 623 compression. In addition, our ATM model, which includes subthreshold adaptation and 624 multiplicative reset, significantly improves upon a sATM. 625 Statistics of the optimized parameters for the ATM are given in Table 2. A few cells (n=5) were 626 better fit with a threshold consisting of two dynamical processes with two different time 627 constants. Statistics for these cells are shown in Table 3. 628  629 Parameter  a   α  β   Δ   Tτ  r Initial range (0, 20) (0, 10) (0.5, 20) (-2ms, 2ms) (0.5ms, 80ms) (0.1 ms, 10 ms) Mean+-SD 3.2±1 0.8±0.9 4.1±3 0.02±0.005 ms 5.3±4.9 ms 2.2±0.8 ms

Table2: Fitted parameter values for the ATM learned at multiple stimulus levels (n=15).. 630  631 Parameter  
1a   

1α   β1 
1Tτ  2a  2α  β2  2Tτ   

Δ  r

Mean+-SD 0.5±0.2 2.4±2.4 12.3±5.8 0.7±0.03ms 40±4ms 0.6±1.2 1.6±1.2 40±34ms 0.01±0.004ms 2±0.4ms
Table3: Fitted parameter values for the ATM with two time constants learned at multiple stimulus levels. 632 The first set of parameters corresponds to the faster time constant, the second one to the slower time 633 constant. The initial ranges were the same as in Table 2 (n=5). 634  635 
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Stochastic models 636 So far, we only considered deterministic spiking neuron models, i.e., with no intrinsic noise. 637 Although the in vivo responses of TB fibers are temporally precise and reliable, there is still some 638 variability, both in timing and in spike count. To account for this variability, we now add a white 639 Gaussian noise, with a given variance 2
noiseσ , to the spike threshold (see Materials and Methods). 640 To maintain a constant signal-to-noise ratio, the standard deviation noiseσ  is proportional to the 641 stimulus level:  noise Iσ σ= , where I  is a low-pass filtered version of the input I. The invariant 642 part σ  of the noise variance is optimized so that the main lobe of the SACs of the model 643 responses at different levels match the main lobe of the SACs of the corresponding recorded data 644 at the same levels (using a mean square error criterion). We refer to this model as the stochastic 645 ATM. 646 We first consider the case of single-level learning. We  compare our model with a widely used 647 approach in neural modeling: the linear-nonlinear Poisson model (LNP(Chichilnisky, 2001; 648 Pillow et al., 2005)). The LNP model consists of a cascade of a linear and a non-linear stage, 649 followed by Poisson spike generation (see Materials and Methods). The linear part is the same 650 auditory filter as previously used whereas the static non-linearity is optimized on the learning 651 dataset. A 60 ms raster plot of responses from the testing set of a TB fiber at two stimulus levels 652 is shown in Fig. 9, for the recorded TB fiber responses (A), the stochastic ATM (B) and the 653 optimized LNP model (C). In this particular example, the LNP responses show more spike jitter 654 than the data whereas the stochastic ATM responses seem qualitatively more similar.  655 Prediction performance on the testing set are shown for the entire population in Fig. 10, where 656 the firing rates (Fig. 10A1), HHW (Fig. 10B1), and CI (Fig. 10C1) of the recorded responses (x-657 axis) are compared with those of the corresponding models (y-axis). The LNP model is better at 658 predicting the firing rate than the stochastic ATM (compare Fig. A1 and A2, 0.99R =  and 659 

0.97EV =  for the LNP model,  0.97R =  and 0.57EV =  for the stochastic ATM). However, the 660 precision of spike timing is poorly predicted by the LNP model, which is generally less precise 661 than the recorded cells: the HHW is too high (Fig. B1, 0.61R =  and 1.15EV = − ) and the 662 correlation index is too low (Fig. C1, 0.77R =  and 0.07EV = ). On the other hand, the precision 663 of spike timing in the stochastic ATM matches the precision of the data very well (HHW in Fig. 664 10B2,  0.75R =  and 0.43EV = ; CI in Fig. 10C2, 0.94R =  and 0.8EV = ). We computed the 665 correlation coefficients between the PSTH of the model and the PSTH of recorded responses for 666 the two models. Fig. 10D shows the correlation for the ATM against the correlation for the LNP 667 for all cells and levels. The PSTHs are clearly better predicted by our adaptive model than by the 668 LNP model (2-sided t-test: p=6×10-8, mean correlation coefficients between the data and the 669 model: 0.65±0.15 for the stochastic ATM  and 0.49±0.20 for the LNP model). We can conclude 670 that, even in the simple case when learning and testing are performed at the same level, the 671 predictions of the stochastic ATM are better than those of the LNP model, because the LNP 672 model is not temporally precise enough. 673 As we did for the deterministic case, we now analyze the testing prediction performance of the 674 stochastic ATM when the learning set consists of multiple stimulus levels, that is, there is a single 675 set of parameter values of all tested levels (Fig. 11, n=20). We do not show the results for the 676 LNP model, because they are extremely poor. By construction, the LNP model does not 677 generalize well across levels: the firing rate is very sensitive to level, spike timing is not sensitive 678 
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at all, and precision decreases (HHW increases) with increasing level. For the stochastic ATM, 679 the prediction performance for the firing rate is shown in Fig. 11A. Although the model slightly 680 overestimates the firing rate, its predictions are good across the entire level range ( 0.95,R =  681 
0.82EV = ). The predicted temporal precision is also slightly higher than the precision of the 682 cells (HHWs are lower for the models than for the recorded data) but they are good on average 683 (Fig. 11B,  0.69,R =  0.22EV = ). The CI is also well predicted (Fig. 11C, 0.82,R =  0.73EV = ). 684 Finally, the prediction performance on the response lags is also very high (Fig. 11D, R 0.87,=  685 
0.72EV = ). The linear regression (dashed line) suggests that the model is in general not 686 sensitive enough to stimulus level. 687 

 688 
 689 
Predicting spike reliability 690 It can be seen in Fig. 9A that for a given stimulus, some spiking events are more reliable than 691 others. By reliable event, we mean that spikes are observed in most trials in the corresponding 692 event, which is defined as an interval where the filtered stimulus I(t) is positive (e.g. events E1 693 and E2 in Fig. 12A). For each event, we define reliability R in a similar way as (Mainen and 694 Sejnowski, 1995), as the proportion of trials in which the neuron spikes in the event. The total 695 number of trials ranges between 35 and 100 in our dataset. R=0 means that no spike was 696 observed in response to the stimulus event (unreliable event), whereas R=1 means that a spike 697 was observed in every trial, i.e., the response is perfectly reliable. 698 We try to explain the reliability of events using our stochastic adaptive threshold model. In our 699 model, reliability should be higher when the input is near or above the average threshold (event 700 E2 in Fig. 12A) than when it is far below the threshold (event E1 in Fig. 12A): the probability of 701 firing due to the noise is higher in the former than in the latter case. This is indeed seen in the 702 raster plots (Fig. 12A, bottom), both for the model and the data. In a model with a fixed 703 threshold, reliability is expected to be mostly determined by the input amplitude in the event 704 (which correlates with the slope of depolarization). But in this example (Fig. 12A), the input 705 magnitude is higher in E1 than in E2, which suggests that the distance to threshold is a better 706 predictor of reliability. 707 In order to quantify these ideas, we first compute the spike count reliability R for each stimulus 708 event, in the responses. We then compute the distance between the mean threshold ( )TV t  and 709 the stimulus I(t), in the corresponding model (d1 and d2 in Fig. 12A). Fig. 12B shows the 710 reliability vs. distance for all events for one cell at a given level. Fig. 12C shows the reliability vs. 711 peak values (maximum of I(t))  for the same cell. Both distance and peak value are normalized to 712 the mean stimulus level. In this example, the distance is a much better predictor of R than the 713 peak values, as indicated by the quality of the fit to a sigmoid function. 714 We then compare the prediction performance of the two quantities, distance and peak, on the 715 entire population (all cells, all levels). For every response and every stimulus level, we calculate 716 the reliability, distance and peak value for all events, and we fit sigmoid functions to the 717 resulting sets of points (one set for reliability vs. distance, one set for reliability vs. peak), as in 718 Fig. 12B, C. This procedure yields two coefficients of determination R² for each cell and level, one 719 
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for the reliability vs. distance fit and one for the reliability vs. peak fit. We compare these two 720 coefficients across the entire dataset, first for the responses generated by the model (Fig. 12D), 721 i.e., using spikes output by the model and the corresponding threshold., We do the same analysis 722 for the recorded responses (Fig. 12E), i.e., we use recorded spikes and the corresponding 723 modelled threshold. As expected, in the model, reliability is much better explained by the 724 distance to threshold than by the input peak (most points are above the diagonal in Fig. 12D). In 725 the recorded responses, the difference is less clear, but distance is still significantly better at 726 predicting reliability than peak (t-test, p=0.001). Given that the threshold was not directly 727 measured but only indirectly inferred through our model fitting procedure, this is an interesting 728 result. 729  730  731 
Discussion 732 In this paper, we presented a phenomenological model of the responses of cochlear nucleus 733 neurons to broadband sounds. It consists of a linear filter followed by an integrate-and-fire 734 model with adaptive threshold. We fitted this model to neuronal data recorded in bushy cell 735 axons of cats, using a recently developed technique (Rossant et al., 2010, 2011). The model 736 predicts the precise timing of spikes produced by these neurons at different sound levels. In 737 particular, it captures an essential property of these neurons: the low sensitivity of spike timing 738 to sound level when considering the natural ILD range. Indeed, when characterizing the 739 detection of ITDs, one must consider the relative timing between both sides. If the absolute 740 timing changes with input level, the relative timing changes by an amount related to the ILD. 741 Acoustical measurements in cat suggest that ILDs at the frequencies studied here are not larger 742 than about 5 dB (Tollin and Koka, 2009). Given that the population median sensitivity to input 743 level is 16 µs/10dB (Fig. 3H) the maximal change in timing across the two ears, expected from 744 ILDs, is about 8 µs (median). This is for positions near the interaural axis where ILDs are  745 maximal. For most spatial positions, the change in timing will be smaller. The lag induced by 746 changes in input level is therefore very small from a behavioral perspective. Note that, due to the 747 paucity of MSO data, it is at present actually unclear whether the level invariance present at the 748 monaural stage of the bushy cells confers invariance in ITD-tuning for ILD and SPL to MSO 749 neurons.  750  751 Our approach is similar in aim to previous studies in the visual pathway, e.g. retina  (Pillow et al., 752 2005), where the input-output function is reproduced, but the anatomy is not modeled in details. 753 It does not follow the general trend in modeling of the early auditory pathway. Indeed, in the 754 past two decades great research efforts have led to the development of detailed quantitative 755 models of the auditory nerve response (Zhang et al., 2001; Sumner et al., 2003; Zilany et al., 756 2009), and of cellular models of neurons of the cochlear nucleus (Kuhlmann et al., 2002; 757 Rothman and Manis, 2003; Zhang and Carney, 2005; McGinley et al., 2012). While those models 758 provide valuable insight of the underlying mechanisms, they were designed to account for a 759 number of properties of auditory nerve fibers or of bushy cells, but not to reproduce the precise 760 spike trains in response to arbitrary input sounds. Making those models predictive would be 761 impractical as they contain several dozens of parameters to be tuned.  762 
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We have shown that spiking neuron models with a fixed threshold and a compressive factor or 763 with a simple adaptive threshold with additive reset (Brandman and Nelson, 2002; Chacron et 764 al., 2003; Kobayashi et al., 2009)  tended to fire too early at high levels and too late at low levels 765 (Fig. 6 and 8). The motivation for the inclusion of a compression on the input in the LIF was two-766 fold: 1) to give a fair chance to the IF model, which would be immediately discarded in the 767 absence of any compression, 2) to demonstrate that input compression is insufficient to account 768 for the data. This simple compressive exponent included in the LIF model is not meant to be a 769 realistic model of cochlear compression, which affects both gain and bandwidth (Zhang et al., 770 2001). In contrast, our model was able to reproduce the effects of stimulus level on neural 771 responses, both for the firing rate and the precise timing of spikes (Fig. 6 and 8). It relies on 772 spike-triggered changes of the threshold that include both an additive and a multiplicative term 773 (Brette, 2012). This model should be useful to build functional models of the auditory system. In 774 particular, spike timing is critical in the ITD processing pathway, and our model provides a 775 simple  model of the monaural neurons involved in this neural circuit. This model may also be 776 useful in a neuro-engineering context. Indeed neuromorphic sensors, such as spiking electronic 777 retinas (Lichtsteiner et al., 2006) and cochleas (Liu et al., 2010), also need to address the issue of 778 encoding signals across a large dynamic range. 779 To account for stochasticity in neural responses, we then added noise in our model, controlled 780 by a single parameter. This noise takes into account the effect of the different sources of noise 781 along the pathway, that is: cochlear, transduction, synaptic, and cellular sources of noise. Similar 782 to previous results (Pillow et al., 2005), we found that a noisy integrate-and-fire model, such as 783 our model, is better at reproducing temporal precision and reliability than an LNP model (Fig. 784 10). In addition, our stochastic model could predict the neural responses with accurate timing, 785 firing rate, temporal precision, and reliability at different stimulus levels (Fig. 11). Note that the 786 LNP model could be modified to predict responses at different input levels (Smirnakis et al., 787 1997) but this was not implemented in the present work. 788 The model provides a phenomenological account of the underlying response reliability. In a 789 given response, the reliability of an input event, i.e., its tendency to fire a spike at each 790 presentation of the same input, is better explained by the difference between the dynamic 791 threshold and the cell's input than by the cell's input alone (Fig. 12). This illustrates that simple 792 integrate-and-fire models provide a convincing phenomenological explanation of spike train 793 statistics, confirming previous work in retinal ganglion cells showing that temporal precision is 794 correlated with the slope of depolarization preceding a spike (Pillow et al., 2005).  795 
Physiological mechanisms of  threshold adaptation 796 In our model, reduced level sensitivity is a consequence of spike threshold adaptation. However, 797 this is only a phenomenological model of the entire early auditory pathway, which was 798 constrained by spikes and not by the membrane potential (which was not recorded). Therefore, 799 we cannot conclude that the measured level sensitivity  is due to threshold adaptation. 800 Nevertheless, threshold adaptation is a well-known property of neurons, which has been 801 reported in many areas, both in vitro and in vivo, in visual cortex (Azouz and Gray, 2000), 802 hippocampus (Henze and Buzsáki, 2001), barrel cortex (Wilent and Contreras, 2005), and  in the 803 avian cochlear nucleus (Howard and Rubel, 2010) and inferior colliculus (Peña and Konishi, 804 2002). This phenomenon was also modeled in several studies (Brandman and Nelson, 2002; 805 Chacron et al., 2003; Kobayashi et al., 2009; Platkiewicz and Brette, 2010, 2011; Brette, 2012). 806 
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Spike initiation is modulated by the properties of voltage-gated channels, in particular the 807 inactivation of Nav1.6 channels in the initial segment and the activation of Kv1 channels. These 808 two mechanisms imply that the voltage threshold for spike initiation adapts to the membrane 809 potential (Platkiewicz and Brette, 2010). The resulting dynamic threshold model accounts for 810 threshold properties observed in vivo such as the sensitivity to depolarization slope (Platkiewicz 811 and Brette, 2011). In (Brette, 2012), it was shown that under specific conditions, threshold 812 adaptation could produce responses that are insensitive to level. The model we have used in this 813 study, the ATM, is an extension of this level invariant model. The cellular mechanisms 814 responsible for threshold adaptation could be present in the bushy cells of the cochlear nucleus 815 (which are the cells we recorded from), and/or in the AN fibers. 816 The modeled threshold could also be implemented via a network mechanism. In particular, it 817 was shown in bushy cells of gerbils that the minimum excitatory input required to elicit a spike 818 increases with level (Kuenzel et al., 2011), which is consistent with our model. The authors 819 suggested that this modulation could be due to inhibition tuned at the same preferred frequency, 820 possibly provided by the dorsal cochlear nucleus. This is a possible explanation, but we note that 821 it requires the inhibitory input to be precisely tuned, with the same properties as the bushy  cell, 822 not only in frequency tuning (same CF) (Caspary et al., 1994; Gai and Carney, 2008), but with the 823 complete response, including temporal properties. Indeed, the threshold must follow envelope 824 changes occurring at the time scale of the characteristic period of the cell. 825 
Rate of depolarization threshold 826 An in-vitro study in mice (McGinley and Oertel, 2006) showed that bushy cells have a threshold 827 of rate of depolarization (ROD), i.e., the excitatory input must depolarize the membrane fast 828 enough to trigger a spike (type III excitability). This empirical observation can be reproduced 829 with our adaptive threshold provided that a>1, which is consistent with the values found for the 830 present data (Table 2 and 3). One such realization is shown in Fig. 13. If the ROD of the input is 831 too small (Fig. 13A), the threshold tracks the input and remains above it, so that no spike is 832 triggered. If the ROD is large enough (Fig. 13B), the threshold does not have the time to track the 833 input, which will cross the threshold. Similar to what was measured in vitro (McGinley and 834 Oertel, 2006), there exists a value along the ROD axis - the ROD threshold - above which a cell 835 will always fire (around 7mV/ms for this example). The precise value of the ROD threshold 836 depends on the time constant of the threshold; the faster it is, the larger the ROD threshold.  837 
Limitations of the model and possible extensions 838 Although the deterministic adaptive model performed very well at predicting spike times at 839 different levels and the stochastic model outperformed the LNP approach, the model could be 840 improved in various ways, at the cost of simplicity. The auditory filtering derived from the 841 reverse correlation, which implements the (linear) filtering of the afferent pathway, was taken 842 here to be constant across levels. For most cells the changes were indeed very small, but a few 843 neural filters showed variations with stimulus level. Time-varying non-linearities controlled by 844 some feedback mechanism could be included, a standard approach used for AN modeling (Tan 845 and Carney, 2003). For instance, the bandwidth of the filters (the inverse of the time constant) 846 (Tan and Carney, 2003) could be a function of input level. The phase of auditory nerve firing for 847 low frequency pure tones is also known to depend on level (Carney and Yin, 1988). More 848 



  
Page 
23  

generally, even at fixed level, the linear front end used in this paper does not capture non-linear 849 stimulus-dependent effects, which is certainly a source of error in the performance of the model.  850 In a few cells, we observed that spike timing shift was positively correlated with level (increase 851 in absolute spike timing with level) (Fig.4F), which seems paradoxical. In theory, the model 852 cannot reproduce this phenomenon. These paradoxical sensitivities have also been recorded in 853 the AN (Michelet et al., 2012) and at the cochlear level (Recio et al., 1998). Whereas the most 854 plausible mechanisms explaining this counter-intuitive phenomenon are cochlear, cellular 855 mechanisms could also be involved. The subthreshold adaptation of the threshold, which in our 856 model is linear, is in reality non-linear (Platkiewicz and Brette, 2010). This more realistic 857 behavior could be included in the model, and might reproduce the observed paradoxical level 858 sensitivity. 859 Our initial motivation was to obtain a simple model that can reproduce the spike trains of 860 auditory neurons across a large range of sound levels. In this study, we used broadband 861 stationary noises as acoustical inputs. A logical next step would be to extend the set of sounds to 862 include a variety of ecological sounds. Certainly, predicting the responses of these neurons to a 863 variety of non-stationary sounds will prove challenging. 864 
 865 
Acknowledgments 866 Work supported by a European Community Marie Curie fellowship (PIOF-GA-2011-300753) for 867 B.F., the Fund for Scientific Research - Flanders (G.0714.09 and G.0961.11), and Research Fund 868 K.U.Leuven (OT/05/57 and OT/09/50) for P.X.J. and by the European Research Council (ERC StG 869 240132) and by Agence Nationale de la Recherche (ANR-11-0001-02 PSL* and ANR-10-LABX-870 0087) for R.B. 871   872 
Bibliography  873 
Avissar M, Furman AC, Saunders JC, Parsons TD. Adaptation reduces spike-count reliability, 874 but not spike-timing precision,  of auditory nerve responses.  J  Neurosci 27: 6461 –6472, 2007. 875 
Azouz R, Gray CM. Dynamic spike threshold reveals a mechanism for synaptic coincidence 876 detection in cortical neurons in vivo. Proc Natl Acad Sci U S A 97: 8110–8115, 2000. 877 
Berry MJ, Warland DK, Meister M. The structure and precision of retinal spike trains. Proc Natl  878 
Aca  Sci  U.S.A. 94: 5411–5416, 1997. 879 
de Boer E, de Jongh HR. On cochlear encoding: potentialities and limitations of the reverse-880 correlation technique. J  Acoust  Soc  Am  63: 115–135, 1978. 881 
de Boer E, Nuttall AL. The mechanical waveform of the basilar membrane. I. Frequency 882 modulations (“glides”) in impulse responses and cross-correlation functions. J  Acoust  Soc  Am 883 101: 3583–3592, 1997. 884 
Brandman R, Nelson ME. A simple model of long-term spike train regularization. Neural 885 
Comput 14: 1575–1597, 2002. 886 



  
Page 
24  

Brenner N, Bialek W, de Ruyter van Steveninck R. Adaptive rescaling maximizes information 887 transmission. Neuron 26: 695–702, 2000. 888 
Brette R. Spiking models for level-invariant encoding. Front Comput Neurosci 5: 63, 2012. 889 
Carney LH, McDuffy MJ, Shekhter I. Frequency glides in the impulse responses of auditory-890 nerve fibers.  J  Acoust  Soc  Am 105: 2384, 1999. 891 
Carney LH, Yin TC. Temporal coding of resonances by low-frequency auditory nerve fibers: 892 single-fiber responses and a population model. J Neurophysiol 60: 1653–1677, 1988. 893 
Caspary DM, Backoff PM, Finlayson PG, Palombi PS. Inhibitory inputs modulate discharge 894 rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J Neurophysiol 895 72: 2124–2133, 1994. 896 
Chacron MJ, Lindner B, Longtin A. Threshold fatigue and information transfer. J Comput 897 
Neurosci 23: 301–311, 2007. 898 
Chacron MJ, Pakdaman K, Longtin A. Interspike interval correlations, memory, adaptation, and 899 refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Comput 15: 900 253–278, 2003. 901 
Chichilnisky EJ. A simple white noise analysis of neuronal light responses. Network 12: 199–902 213, 2001. 903 
Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR. Efficiency and ambiguity in 904 an adaptive neural code. Nature 412: 787–792, 2001. 905 
Fischer BJ, Steinberg LJ, Fontaine B, Brette R, Peña JL. Effect of instantaneous frequency 906 glides on interaural time difference processing by auditory coincidence detectors. Proc Natl  907 
Acad  Sci  U.S.A. 108: 18138 –18143, 2011. 908 
Fontaine B, Goodman DFM, Benichoux V, Brette R. Brian hears: online auditory processing 909 using vectorization over channels. Front Neuroinform 5: 9, 2011. 910 
Gai Y, Carney LH. Influence of inhibitory inputs on rate and timing of responses in the 911 anteroventral cochlear nucleus. J Neurophysiol 99: 1077–1095, 2008. 912 
Gerstner W, Naud R. How good are neuron models? Science 326: 379–380, 2009. 913 
Gollisch T, Meister M. Rapid neural coding in the retina with relative spike latencies. Science 914 319: 1108–1111, 2008. 915 
Goodman DFM, Brette R. The Brian simulator. Front Neurosci 3, 183-196, 2009. 916 
Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evol 917 
Comput 9: 159–195, 2001. 918 
Henze D., Buzsáki G. Action potential threshold of hippocampal pyramidal cells in vivo is 919 increased by recent spiking activity. Neuroscience 105: 121–130, 2001. 920 
Hosoya T, Baccus SA, Meister M. Dynamic predictive coding by the retina. Nature 436: 71–77, 921 2005. 922 



  
Page 
25  

Howard MA, Rubel EW. Dynamic spike thresholds during synaptic integration preserve and 923 enhance temporal response properties in the avian cochlear nucleus. J  Neurosci 30: 12063 –924 12074, 2010. 925 
Irino T, Patterson RD. A compressive gammachirp auditory filter for both physiological and 926 psychophysical data.  J  Acoust  Soc  Am 109: 2008, 2001. 927 
Jolivet R, Schürmann F, Berger TK, Naud R, Gerstner W, Roth A. The quantitative single-928 neuron modeling competition. Biol Cybern 99: 417–426, 2008. 929 
Jolivet R., Lewis JL, Gerstner W. Generalized integrate-and-fire Models of Neuronal Activity 930 Approximate Spike Trains of a Detailed Model to a High Degree of Accuracy. J Neurophysiol  92: 931 959–976, 2004. 932 
Joris PX, Carney LH, Smith PH, Yin T. Enhancement of neural synchronization in the 933 anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J 934 
Neurophysiol 71: 1022–1036, 1994. 935 
Joris PX, Louage DH, Cardoen L, van der Heijden M. Correlation index: a new metric to 936 quantify temporal coding. Hear  res  216: 19–30, 2006. 937 
Joris PX, Smith PH. The volley theory and the spherical cell puzzle. Neuroscience 154: 65–76, 938 2008. 939 
Keat J, Reinagel P, Reid RC, Meister M. Predicting every spike: a model for the responses of 940 visual neurons. Neuron 30: 803–817, 2001. 941 
Kobayashi R, Tsubo Y, Shinomoto S. Made-to-order spiking neuron model equipped with a 942 multi-timescale adaptive threshold. Front  Comput Neurosci 3: 9, 2009. 943 
Kuenzel T, Borst JGG, van der Heijden M. Factors controlling the input–output relationship of 944 spherical bushy cells in the gerbil cochlear nucleus. J Neurosci 31: 4260 –4273, 2011. 945 
Kuhlmann L, Burkitt AN, Paolini A, Clark GM. Summation of spatiotemporal input patterns in 946 leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving 947 converging auditory nerve fiber input. J Comput Neurosci 12: 55–73, 2002. 948 
Lichtsteiner P, Posch C, Delbrück T. A 128 X 128 120db 30mw asynchronous vision sensor 949 that responds to relative intensity change. In: Solid-State Circuits Conference, 2006. ISSCC 2006. 950 
Digest of Technical Papers. IEEE International., 2006, p. 2060 –2069. 951 
Liu S-C, van Schaik A, Minch BA, Delbrück T. Event-based 64-channel binaural silicon cochlea 952 with Q enhancement mechanisms. In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE 953 
International Symposium on., 2010, p. 2027 –2030. 954 
Louage DHG, van der Heijden M, Joris PX. Enhanced temporal response properties of 955 anteroventral cochlear nucleus neurons to broadband noise. J Neurosci 25: 1560 –1570, 2005. 956 
Louage DHG, Joris PX, van der Heijden M. Decorrelation sensitivity of auditory nerve and 957 anteroventral cochlear nucleus fibers to broadband and narrowband noise. J Neurosci 26: 96 –958 108, 2006. 959 
Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. Science 268: 1503, 960 1995. 961 



  
Page 
26  

McGinley MJ, Liberman MC, Bal R, Oertel D. Generating synchrony from the asynchronous: 962 compensation for cochlear traveling wave delays by the dendrites of individual brainstem 963 neurons. J Neurosci 32: 9301–9311, 2012. 964 
McGinley MJ, Oertel D. Rate thresholds determine the precision of temporal integration in 965 principal cells of the ventral cochlear nucleus. Hear res 216: 52–63, 2006. 966 
Michelet P, Kovačić D, Joris PX. Ongoing temporal coding of a stochastic stimulus as a function 967 of intensity: time-intensity trading. J Neurosci 32: 9517–9527, 2012. 968 
Nagel KI, Doupe AJ. Temporal processing and adaptation in the songbird auditory forebrain. 969 
Neuron 51: 845–859, 2006. 970 
Oertel D. The role of timing in the brain stem auditory nuclei of vertebrates. Annu Rev Physiol 971 61: 497–519, 1999. 972 
Patterson RD. The sound of a sinusoid: spectral models.  J  Acoust  Soc  Am 96: 1409–1418, 973 1994. 974 
Peña JL, Konishi M. From postsynaptic potentials to spikes in the genesis of auditory spatial 975 receptive fields. J  Neurosci 22: 5652 –5658, 2002. 976 
Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ. Prediction and decoding of 977 retinal ganglion cell responses with a probabilistic spiking model. J  Neurosci 25: 11003 –11013, 978 2005. 979 
Platkiewicz J, Brette R. A Threshold equation for action potential initiation. PLoS Comput Biol 6: 980 e1000850, 2010. 981 
Platkiewicz J, Brette R. Impact of fast sodium channelinactivation on spike threshold dynamics 982 and synaptic integration. PLoS Comput Biol 7: e1001129, 2011. 983 
Recio-Spinoso A. Enhancement and distortion in the temporal representation of sounds in the 984 ventral cochlear nucleus of chinchillas and cats. PLoS One. 7(9):e44286. doi: 985 10.1371/journal.pone.0044286., 2012. 986 
Recio A, Rich NC, Narayan SS, Ruggero MA. Basilar-membrane responses to clicks at the base 987 of the chinchilla cochlea.  J  Acoust  Soc  Am 103: 1972–1989, 1998. 988 
Recio-Spinoso A, Narayan SS, Ruggero MA. Basilar membrane responses to noise at a basal 989 site of the chinchilla cochlea: quasi-linear filtering. JARO - J  Assoc Res Oto 10: 471–484, 2009. 990 
Rossant C, Fontaine B, Goodman DFM. Playdoh: A lightweight Python library for distributed 991 computing and optimisation. J Comput Sci  doi: 10.1016/j.jocs.2011.06.002, in press. 992 
Rossant C, Goodman DFM, Fontaine B, Platkiewicz J, Magnusson AK, Brette R. Fitting 993 neuron models to spike trains. Front Neurosci 5: 9, 2011. 994 
Rossant C, Goodman DFM, Platkiewicz J, Brette R. Automatic fitting of spiking neuron models 995 to electrophysiological recordings. Fron  Neuroinform 4: 2, 2010. 996 
Rothman JS, Manis PB. The roles potassium currents play in regulating the electrical activity of 997 ventral cochlear nucleus neurons. J Neurophysiol 89: 3097 –3113, 2003. 998 



  
Page 
27  

de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W. Reproducibility 999 and variability in neural spike trains. Science 275: 1805–1808, 1997. 1000 
Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE. Neural variability, detection thresholds, and 1001 information transmission in the vestibular system. J Neurosci 27: 771–781, 2007. 1002 
Savard M, Krahe R, Chacron MJ. Neural heterogeneities influence envelope and temporal 1003 coding at the sensory periphery. Neuroscience 172: 270–284, 2011. 1004 
Schwartz O, Pillow JW, Rust NC, Simoncelli EP. Spike-triggered neural characterization. J 1005 
Vision 6, 2006. 1006 
Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M. Adaptation of retinal processing 1007 to image contrast and spatial scale. Nature 386: 69–73, 1997. 1008 
Sumner CJ, Lopez-Poveda EA, O’Mard LP, Meddis R. Adaptation in a revised inner-hair cell 1009 model.  J  Acoust  Soc  Am 113: 893, 2003. 1010 
Tan Q, Carney LH. A phenomenological model for the responses of auditory-nerve fibers. II. 1011 Nonlinear tuning with a frequency glide.  J  Acoust  Soc  Am 114: 2007, 2003. 1012 
Tollin DJ, Koka K. Postnatal development of sound pressure transformations by the head and 1013 pinnae of the cat: monaural characteristics. J Acoust Soc Am 125: 980–994, 2009. 1014 
Trussell LO. Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61: 1015 477–496, 1999. 1016 
van der Heijden M, Joris PX. Interaural correlation fails to account for detection in a classic 1017 binaural task: dynamic ITDs dominate N0Sπ detection. J. Assoc. Res. Otolaryngol. 11:113-131, 1018 2010. 1019 
van der Heijden M, Louage DHG, Joris PX. Responses of auditory nerve and anteroventral 1020 cochlear nucleus fibers to broadband and narrowband noise: implications for the sensitivity to 1021 interaural delays. J. Assoc. Res. Otolaryngol. 12:485-502, 2011. 1022 
Wagner H, Brill S, Kempter R, Carr CE. Auditory responses in the barn owl’s nucleus laminaris 1023 to clicks: impulse response and signal analysis of neurophonic potential. J Neurophysiol 102: 1024 1227–1240, 2009. 1025 
Wakeford OS, Robinson DE. Lateralization of tonal stimuli by the cat.  J  Acoust  Soc  Am 55: 1026 649–652, 1974. 1027 
Wilent WB, Contreras D. Stimulus-dependent changes in spike threshold enhance feature 1028 selectivity in rat barrel cortex neurons. J Neurosci 25: 2983–2991, 2005. 1029 
Yin TCT, Chan JCK, Irvine DRF. Effects of interaural time delays of noise stimuli on low-1030 frequency cells in the cat’s inferior colliculus. I. responses to wideband noise. J Neurophysiol 55: 1031 280–300, 1986. 1032 
Yin TCT, Chan JCK. Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64: 1033 465–488, 1990. 1034 



  
Page 
28  

Yin TCT. Neural mechanisms of encoding binaural localization cues in the auditory brainstem. 1035 In: Integrative Functions in the Mammalian Auditory Pathway, edited by D. Oertel, A. N. Popper, 1036 and R. R. Fay. New York: Springer, 2002, p. 99–159. 1037 
Young ED, Barta PE. Rate responses of auditory nerve fibers to tones in noise near masked 1038 threshold.  J  Acoust  Soc  Am 79: 426–442, 1986. 1039 
Zhang X, Carney LH. Response properties of an integrate-and-fire model that receives 1040 subthreshold inputs. Neural comput 17: 2571–2601, 2005. 1041 
Zhang X, Heinz MG, Bruce IC, Carney LH. A phenomenological model for the responses of 1042 auditory-nerve fibers: I. Nonlinear tuning with compression and suppression.  J  Acoust  Soc  Am 1043 109: 648, 2001. 1044 
Zilany MSA, Bruce IC, Nelson PC, Carney LH. A phenomenological model of the synapse 1045 between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics.  1046 
J  Acoust  Soc  Am 126: 2390, 2009. 1047  1048 
Figure captions 1049 
Fig.1: Coding of fine-structure in trapezoid body. Dot rasters to 50 presentations of a frozen 1050 broadband noise at 6 different stimulus levels (ranging from 40dB SPL up to 90dB SPL). This 1051 example is the cell which has been presented the greatest number of input levels in our dataset.  1052 
Fig. 2: Schematic illustration of the correlograms calculation. A: Shuffled auto correlogram 1053 (SAC) computation. A1: the intervals between a certain spike (surrounded by an ellipse in this 1054 example) and every other forward spike in the other trains (but not the spikes from the same 1055 train) are computed and tallied in a histogram (Fig. A2). This operation is repeated for every 1056 spike of every spike train, the results mirrored (as the auto correlation is symmetric), yielding 1057 the SAC (Fig. A3). The half-height width (HHW) is the width of the main lobe where the values 1058 are half of the SAC peak. B: Cross stimulus autocorrelogram (XAC) computation. Same as in A but 1059 in this case, the intervals are computed between individual spikes from the responses to a 1060 repeated stimulus at one stimulus level and all spikes from a repeated stimulus at another 1061 stimulus level (including the same trial index). Both forward and backward intervals are 1062 considered (Fig. B2). Repeating this operation for every spike yields the XAC (Fig. B3). The lag is 1063 defined as the position of the main lobe peak. 1064 
Fig.3: High-sync response properties as a function of stimulus level. A-G: The responses of 1065 the neurons are characterized using several metrics at different stimulus levels (x-axis). Each 1066 point represents a TB fiber response at a given level and data from a single fiber are joined by a 1067 solid line.  A: Half-height width of the SAC. B: Correlation index. C:  mean firing rate. D: intrinsic 1068 
intГ  with a temporal window of 0.5ms. E: Fano factor. F: lag in µs of the response with respect to 1069 a reference (usually at 70dB). G: same as F but with the lag given in cycle (lag in µs*CF).  H,I: 1070 sensitivity with respect to level of each fiber (defined as the slopes of the linear regressions 1071 performed on  the curves in (G) and (F)). (H) gives the lag sensitivity in µs/10dB whereas (I) is 1072 in cycle/10dB. 1073  1074 
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Fig.4:  Reverse correlation analysis.  (A): RevCor examples for a fiber at 6 input levels from 1075 40dB to 90dB (each color represents one level with the darkest color for the lowest level and the 1076 brightest color for the highest level) (B): Example of resulting linear gamma chirp fits of the 1077 revcors shown in (A). In (C, D, and E) the left column shows resulting fitting parameters as a 1078 function of the fiber CF for different input levels. Data points are color-coded, with a dark color 1079 for the lower SPLs and a bright color for the higher SPLs. Each line connecting two or more data 1080 points represents the data from one fiber (n=24) at multiple SPLs. The right column represents 1081 the percentage of change per 10 dB of the corresponding parameter as a function of the fiber CF. 1082 This percentage is defined as the level sensitivity (defined as the slope of the linear regression 1083 line) divided by the mean value of the parameter.  C: width τ  of the gamma envelope. D: starting 1084 frequency 0 f  of the chirp. E: glide slope c  in kHz/ms. 1085  1086 
Fig. 5: Testing results using a fixed threshold with learning at equal stimulus levels A: The 1087 pre-processing  performed on the incoming sound consists of the linear filtering implemented as 1088 a FIR filter with an impulse response derived from a reverse correlation procedure. The output 1089 signal is delayed in order to compensate for synaptic and filtering delays. The delayed signal is 1090 then fed to a neuron model. The output spike trains are compared to the target spike trains 1091 using a fitness criterion. B: LIF model: after half-wave rectification and compression, the signal is 1092 fed to a LIF neuron model which integrates the signal and outputs a spike if it crosses a fixed 1093 threshold. The parameters of the LIF model are learned at each stimulus level for each neuron 1094 and the testing is performed at the same level, but with an independent input. C: example of 1095 spike train responses at two stimulus levels. The rasters in black are the recorded spike trains of 1096 the fiber (50 trials of a frozen noise at two levels, 50 dB and 70 dB). The red vertical lines are the 1097 output spikes of the LIF neuron model. D: the firing rates of the models (y-axis) against the firing 1098 rates of the corresponding  fibers at different levels (x-axis). The solid line is the identity 1099 diagonal. The data points are color-coded with a dark color for the lower SPLs and a bright color 1100 for the higher SPLs. E: Same as in (D) but for the mean gamma factors Г  between the models 1101 and the fiber responses (y-axis) against  the intrinsic Gamma factors intГ  of the measured 1102 responses (x-axis). EV: explained variance, R: coefficient of correlation. F, G: resulting 1103 parameters as a function of input level, each line represents a single fiber for the fixed threshold 1104 
  TV (D), and the compression exponent c (E).  1105  1106 
Fig.6: Comparison between fixed and adaptive threshold.  The spike trains of a fiber 1107 recorded at six SPLs were concatenated to train a model but the testing is performed at every 1108 level. A: The rasters in black are the measured spikes of a fiber fed with 6 stimulus levels (10ms  1109 zoom, 40dB to 90dB in 10dB steps, 50 trials of the same frozen noise at every intensity). The red 1110 vertical lines are the resulting spikes of the adaptive threshold model (inset of (E)) and the green 1111 ones are those of the fixed threshold model. (A) is a 10-ms chunk of the raster plot. B, C: The 1112 corresponding testing results are shown for different stimulus levels as the response lag with 1113 respect to a intensity reference (B) and as the mean firing rates (C). The blue curves represent 1114 the metrics of the measured data, the red ones are for the adaptive threshold model, and the 1115 green ones for the fixed threshold model. The differences in discharge behavior when the input 1116 intensity is varied are illustrated in (D) and (E). In (D), it is shown that an increase in intensity 1117 
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changes the time of firing and the number of spikes generated with a fixed threshold model, 1118 whereas a carefully chosen adaptive threshold can yield invariant responses (E). F: The rasters 1119 in black are the measured spikes of a fiber fed with 6 stimulus levels (same as in (A) but with a 1120 50ms zoom). The red vertical lines are the resulting spikes of the adaptive threshold model 1121 
Fig.7: Effect of previous spikes on firing probability. A: illustration of the procedure used to 1122 compute the probabilities 0 1

iP→  and 1 1
iP→  (see Material and Methods). For each event, 1 1

iP→  (resp. 1123 
0 1)iP→  is the probability  that a spike is generated at time t  ( t in event i) given that a spike 1124 occurred (resp. did not occur) in a given past temporal window Δ  (green box). In order to 1125 discard possible effects of the refractory period, for a given event starting at time t,   spikes 1126 occurring in the grey box are discarded. B: Interspike-interval histogram (ISI) for a fiber at one 1127 intensity. The refractory period for each fiber is defined as the shortest interval where the ISI 1128 histogram exceeds 5% of its maximum (red vertical line). C and D: All of the probabilities paired  1129 

0 1 1 1( , ) i iP P→ → are pooled and a 2-dimensional kernel density estimation is performed. Dark blue 1130 represent low probabilities and dark red high probabilities. In (C) the time window has a 1131 duration extending in the past that equals the fiber characteristic period (CP). In (D) the time 1132 window extends from t-2CP to t-CP, where t is the time of the event. In (C) the firing 1133 probabilities when a spike occurred in the time window is lower than when no spike occurred, 1134 which means that spike history has a suppressive effect on subsequent spikes. This is not the 1135 case when the process looks further in the past (D).  1136  1137 
Fig.8: Population testing for multi-intensity learning of the deterministic models. For each 1138 TB fiber the parameters of the fixed threshold model (row 1), the simple adaptive threshold 1139 model (row 2), the level invariant model (row 3), and our adaptive threshold model  (row 4)  are 1140 learned with all stimulus levels available for this fiber at once and testing is performed at every 1141 intensity using the corresponding models with independent inputs. The points in the figures, 1142 which represent TB fibers at single stimulus levels, are color-coded, with lowest stimulus levels 1143 having dark colors and high levels having bright colors. The solid lines are the identity diagonals. 1144 A:  firing rates of the models (y-axis) against firing rates of the corresponding fibers at different 1145 levels (x-axis). B: same as in (A) but for the mean gamma factor between the model and the fiber 1146 responses (y-axis) against the intrinsic gamma factor intГ  of the measured responses (x-axis). C: 1147 lag of the responses with respect to a reference intensity (usually 70dB) for the measured data 1148 (x-axis) and the corresponding models (y-axis). The dashed lines represent the linear regression 1149 over the entire dataset. EV: explained variance, R: coefficient of correlation 1150  1151 
Fig.9: Raster plots of stochastic models learned at equal levels. Responses in the testing set 1152 for a recorded TB fiber (A), the corresponding stochastic ATM (B) and LNP model (C), at two 1153 different stimulus levels (50dB and 70dB). 50 tokens of the same frozen noise were presented at 1154 each intensity. The models were learned at a single intensity and tested at the same intensity 1155 with another noise token.  1156  1157 
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Fig.10: Population results of the stochastic models learned at equal intensity. Row 1 shows 1158 the population testing performance of the LNP model, row 2 the population testing performance 1159 of the stochastic ATM. In each plot, the model data (y-axis) are plotted against the recorded data 1160 (x-axis). Each point, which represents a TB fiber at a given stimulus intensity, is  color coded 1161 with a dark color for the lower SPLs and a bright color for the higher SPLs. The solid lines are the 1162 identity diagonals. (A) compares the firing rates of the models and the data, (B) the HHW, and 1163 (C) the correlation index. (D) Correlation coefficients between the two modeled responses (LNP 1164 model on x-axis, noisy ATM on y-axis). and the corresponding measured responses. EV: 1165 explained variance, R: coefficient of correlation. 1166 
Fig.11: Population tests of the performance of the stochastic ATM for multi-levels 1167 
learning. For each TB fiber the parameters of the ATM models are learned with all stimulus 1168 levels available for this fiber at once and testing is performed at every level using the 1169 corresponding models. The points in the figures, which represent TB fibers at single stimulus 1170 levels, are color-coded, with lowest stimulus levels having dark colors and high levels having 1171 bright colors. The solid lines are the identity diagonals. A: the firing rates of the model responses 1172 (y-axis) against the firing rates of the actual responses at different levels (x-axis). B: same as in 1173 (A) but for the HHW. C: same as in (A) but for the correlation index. D: lag of the responses with 1174 respect to a reference level (usually 70dB) for the measured data (x-axis) and for the 1175 corresponding models (y-axis). The dashed line represents the linear regression over the entire 1176 dataset. EV: explained variance, R: coefficient of correlation. 1177 
Fig.12: Predicting spike count reliability on the testing set.  (A) An event, e.g. E1 or E2, is 1178 defined as a time interval where the filtered input stimulus to the modeled neuron is larger than 1179 zero. The stochastic thresholds of all the trials (light grey lines) are averaged to yield mean 1180 threshold ( )TV t< >  (thick black curve). For each event, the distance between stimulus and 1181 mean threshold, e.g. d1<0 or d2>0,   is defined as the difference between the peak of the stimulus 1182 in the event and the value of  ( )TV t< >  at the beginning of the event. The other panels of (A) 1183 show the corresponding raster plot of the 50 presentations of a noise token for the spikes 1184 generated by a stochastic ATM (middle row) and for the actual responses (bottom row). In this 1185 example the distances d1 and d2 correlate better with the corresponding reliabilities than the 1186 peak values of the input in E1 and E2. This procedure is repeated for every event of a TB 1187 response. The resulting distance-reliability (B) and peak value-reliability (C) pairs are shown for 1188 the same cell. Both distance and peak values are normalized with respect to the mean stimulus 1189 level. The thick black line is the fit of an error function to the data points. Each curve yields a 1190 coefficient of determination 2R , characterizing the quality of the fit. The 2R  values for the peak 1191 values (x-axis) are plotted against the 2R  values for the distances (y-axis) for the responses 1192 generated by the stochastic ATM model (D) and the in-vivo recorded responses (E). 1193  1194 
Fig.13: Modeling the rate of depolarization threshold (ROD). If the threshold adapts to the 1195 input signal, for slow depolarization (A) the threshold will track the input and no spike will be 1196 fired. If depolarization is fast enough (B), the threshold will not have time to track the input and 1197 a spike will be fired. . In this example, the step goes from 0.2 mV to 15 mV at different speeds. 1198 The relevant model parameters are: a=3, τ=2 ms, α=1, β=1, and r=1 ms. 1199 
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