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Abstract

Neurons compute mainly with action potentials or “spikes”, which are
stereotypical electrical impulses. Over the last century, the operating func-
tion of neurons has been mainly described in terms of firing rates, with the
timing of spikes bearing little information. More recently, experimental ev-
idence and theoretical studies have shown that the relative spike timing of
inputs has an important effect both on computation and learning in neurons.
This evidence has triggered considerable interest for spiking neuron models in
computational neuroscience, but the theory of computation in those models
is sparse.

Spiking neuron models are hybrid dynamical systems, combining differ-
ential equations and discrete events. I have developed specific theoretical
approaches to study this particular type of models. In particular, two spe-
cific properties seem to be relevant for computation: spiking models can
encode time-varying inputs into trains of precisely timed spikes, and they are
more likely fire to when input spike trains are tightly correlated. To simulate
spiking models efficiently, we have developed specific techniques, which can
now be used in an open source simulator (Brian).

These theoretical and methodological investigations now allow us to ad-
dress spike-based modeling at a more global and functional level. Since the
mechanisms of synaptic plasticity tend to favor synchronous inputs, I pro-
pose to investigate computational mechanisms based on neural synchrony in
sensory modalities.
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1 Introduction

Computational neuroscience is often depicted as a subfield of neuroscience which
uses computer modelling as its main tool to understand the nervous system. A
famous example is the Nobelized Hodgkin-Huxley model. In the beginning of
the twentieth century, the action potential was thought to reflect a non-selective
increase in membrane permeability, which would reduce the difference between in-
tracellular and extracellular potential (Bernstein, 1912). This view was challenged
by Hodgkin and Huxley who found, in the first intracellular recording of an action
potential in an animal cell1, that the membrane potential became positive during
action potentials (Hodgkin and Huxley, 1939), and they hypothesized that the ac-
tion potential was due to a selective increase in sodium permeability. To support
their theory, they developed a quantitative model of the squid axon membrane
which could account for many aspects of electrophysiological recordings (Hodgkin
and Huxley, 1952). This achievement is all the more impressive since single chan-
nel recordings were made possible only 20 years later (Sakmann et al., 1976). The
mathematical model was a central part of the discoveries for which Hodgkin and
Huxley were awarded the Nobel prize.

This historical example highlights the idea that computer modelling allows
testing ideas when experiments would be very challenging or impossible. It is also
a way of addressing questions for which the experimental approach is intrinsically
limited in complex systems such as the brain, that is, understanding how the
properties of elementary units (neurons) combine to explain the properties of the
organism. While experiments can help unravel the properties at a given complex-
ity level (e.g., integration properties of single neurons), they do not directly explain
how these properties transfer to the next complexity level (Anderson, 1972). Thus,
computational modelling is an answer to the limits of reductionism in complex sys-
tems, where properties of distinct complexity levels (neuron, network, organism)
might be qualitatively very different. Moreover, in living organisms, one might
argue that it is not so obvious whether the lower level (neurons) should explain the
higher one (organism) or the converse should be true, because lower level proper-
ties indirectly depend on higher level properties (e.g. ecological fitness) through
evolution.

I will give two simple examples of how computational modelling, or theoret-
ical neuroscience in general, has increased our understanding of neural function.
Much of our current understanding of neuron function comes from in vitro experi-
ments. Patch clamp experiments have shown that the membrane time constant of
cortical neurons is several tens of milliseconds, suggesting that neurons integrate
inputs over time and are mostly insensitive to fine correlations. However, com-
putational modelling studies have later shown that the situation might be very
different in vivo, because the intense synaptic activity increases the total con-
ductance and therefore shortens the time constant, putting neurons in a so-called
high-conductance state (Destexhe et al., 2003). This was confirmed in experiments,
showing that the membrane time constant in vivo is only a few milliseconds (Pare

1The first intracellular recording of an action potential was in fact made by Umrath in 1930
in plant cells, which have very slow action potentials (Umrath, 1930).
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et al., 1998; Leger et al., 2005) 2. This simple fact implies that neurons are driven
by fast fluctuations (possibly tightly correlated inputs) because their membrane
time constant is many times shorter than typical interspike intervals.

The second example is the concept of the balanced regime: excitation is, on
average, balanced by the same amount of inhibition in cortical neurons. It is an
interesting example in that a constraint at network level transfers to a constraint
for single cells, which is the converse of a standard reductionist approach. The
idea comes from the observation of an apparent contradiction: cortical neurons
receive inputs from many neurons (about 10,000 synapses per neuron) and fire
very irregularly in vivo (in fact, almost Poisson-like), but the law of larger numbers
would predict that any single neuron should then receive a quasi-constant drive
and thus fire regularly (Softky and Koch, 1993). This contradiction can be raised
if inhibition balances excitation, because then the mean drive is below threshold
and spikes can only be triggered by fluctuations, which are irregular (Shadlen and
Newsome, 1998).

While computational neuroscience often refers to the use of computer mod-
elling to address neuroscience questions that cannot be addressed by experimen-
tation, there is another view of the field which I want to develop more specifically
in this thesis, which is the study of how the brain computes. The brain does not
work as a computer, but it computes: it solves complex computational problems
such as understanding speech in noisy environments or identifying faces. It does
so in a way that is fundamentally different from a Turing machine, the model
of classical computing. For example, it is massively parallel (billions of neurons)
and very plastic, memory is distributed and addressed by content. All these facts
are now well known and have led to the development of successful computational
theories such as artificial neural network theory. But there is one other specific
fact about how the brain computes, which is the subject of this thesis: to a first
approximation3, neurons communicate with discrete timed events: spikes. Thus,
a neuron can be seen as an elementary computing device which maps input spike
trains to an output spike train, which is why I chose to focus on spiking neuron
models and to investigate what this fact might imply in terms of computation.

The first question to answer (section 2) is: what is a realistic spiking neuron
model? I focussed on two specific aspects: spike initiation, leading to dynamical
models of the spike threshold, and two-dimensional spiking models that can ac-
count for a variety of electrophysiological classes. Secondly, I will present some of
the most relevant mathematical properties of single spiking neuron models (section
3), in particular two properties that are important for computation: reliable en-
coding of time-varying inputs into trains of precisely timed spikes, and coincidence
detection. These models require specific techniques to simulate them, which I will
discuss in section 4. Finally, I will sketch a theory of spike-based computation

2The value might be underestimated because those experiments used sharp microelectrodes,
which damage the membrane and typically yield smaller time constant values than patch elec-
trodes (Brette and Destexhe, 2009); in any case, it remains that the membrane time constant is
several times shorter in vivo than at rest.

3Deviations from spike-based communication include electrical synapses and effects of sub-
threshold potential on target synapses (Shu et al., 2006).
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that relies on selective synchronization (section 5).

2 What is a good spiking neuron model?

2.1 General considerations

What is a spiking neuron model?

Input spike trains

Output spike train

dX/dt=f(X)

X←gi(X)

X∈A

Figure 1: A spiking neuron model: input spikes modify state variables X, which otherwise
evolve continuously through differential equations. Spikes are emitted when a threshold
condition is met.

A spiking model is a mathematical model which describes how input spike
trains (sequences of timings) are mapped to an output spike train. Mathematically,
neurons can be described as hybrid systems (Brette et al., 2007): the state of a
neuron evolves continuously according to some biophysical equations, which are
typically differential equations (deterministic or stochastic, ordinary or partial
differential equations), and spikes received through the synapses trigger changes
in some of the variables (see Fig. 1). Thus the dynamics of a neuron can be
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described as follows:

dX
dt

= f(X)

X ← gi(X) upon spike from synapse i

where X is a vector describing the state of the neuron4. Spikes are emitted when
some threshold condition is satisfied, for instance Vm ≥ θ for integrate-and-fire
models (where Vm is the membrane potential and would be the first component
of vector X), and/or dVm/dt ≥ θ for Hodgkin-Huxley type models. This can be
summarized by saying that a spike is emitted whenever some condition X ∈ A is
satisfied. For integrate-and-fire models, the membrane potential, which would be
the first component of X, is reset when a spike is produced5.

A different formalism may be found in the litterature, where the membrane
potential is expressed as a sum of postsynaptic potentials, but it can normally be
equivalently restated in the hybrid system formalism. For example, consider the
following integrate-and-fire model (described for example in Gtig and Sompolinsky
(2006)):

V (t) =
∑
i

wi
∑
ti

K(t− ti) + Vrest

where V (t) is the membrane potential, Vrest is the rest potential, wi is the synaptic
weight of synapse i, ti are the timings of the spikes coming from synapse i, and
K(t−ti) = exp(−(t−ti)/τ)−exp(−(t−ti)/τs) is the post-synaptic potential (PSP)
contributed by each incoming spike. The model can be restated as a two-variables
differential system with discrete events as follows:

τ
dV

dt
= Vrest − V + J

τs
dJ

dt
= −J

J ← J +
τ − τs
τ

wi upon spike from synapse i

Virtually all post-synaptic potentials or currents described in the literature
(e.g. α-functions, bi-exponential functions) can be expressed this way. Several
authors have described the transformation from phenomenological expressions to
the hybrid system formalism for synaptic conductances and currents (Destexhe
et al., 1994; Rotter and Diesmann, 1999; Giugliano, 2000), short-term synaptic
depression (Giugliano et al., 1999), and spike-timing-dependent plasticity (Song
et al., 2000). In many cases, the Spike Response Model (Gerstner and Kistler,
2002) is also the integral expression of a hybrid system. To derive the differential
formulation of a given post-synaptic current or conductance (PSC), one way is
to see the latter as the impulse response of a linear time-invariant system (which

4In theory, taking into account the morphology of the neuron would lead to partial differ-
ential equations; however, in practice, one usually approximates the dendritic tree by coupled
isopotential compartments, which also leads to a differential system with discrete events.

5The reset can be integrated into the hybrid system formalism by considering for example
that outgoing spikes act on X through an additional (virtual) synapse: X← g0(X).
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can be seen as a filter (Jahnke et al., 1999)) and use transformation tools from
signal processing theory such as the Z-transform (Khn and Wrgtter, 1998) or the
Laplace transform (the Z-transform is the equivalent of the Laplace transform in
the digital time domain, i.e., for clock-driven algorithms).

What is a “realistic” neuron model?

It seems very reasonable to equate realism and level of detail in models, that is,
that a realistic model is one that incorporates many biological components, for
example Hodgkin-Huxley models are more realistic than integrate-and-fire mod-
els, but less realistic than multicompartmental biophysical models. Since simpler
models neglect some aspects of cellular biophysics, they must be less realistic than
models that do not. Although in principle this seems a very reasonable statement,
I would argue that in many cases the converse might in fact be true, because
adding more details introduces more uncertainty (e.g. about parameter values)
at the expense of functional constraints, which are in the end more important. I
will illustrate this point with an example, which will be explained in more detail
in the next section.

The Hodgkin-Huxley model has been very successful in explaining action po-
tential generation, and consequently it has been widely used in computational
modelling studies, for example in single compartment models of cortical neurons
(Meunier and Segev, 2002). It is generally assumed that it is more accurate that
an integrate-and-fire model, which is used only as a simplification. However, it was
meant to model the axon of a giant squid, and for example it predicts an unrealistic
shape for action potentials of cortical neurons, which are much sharper (Naundorf
et al., 2006).The reason for this is known, and is in fact not contradictory with
Hodgkin-Huxley theory: it is due to active backpropagation of spikes from the site
of action potential generation in the axon hillock to the soma (McCormick et al.,
2007). But it remains that the single-compartment Hodgkin-Huxley model is a
poor model of cortical neurons (see also section 2.2). On the other hand, simpler
adaptive integrate-and-fire models are very good at predicting the rate and spike
times of a cortical neuron in response to somatic current injection (Rauch et al.,
2003; Badel et al., 2008; Jolivet et al., 2008; Camera et al., 2008), using an effective
sharpness parameter (the slope factor) that is smaller than expected from sodium
channel properties (slightly more than 1 mV vs. more than 6 mV). To account for
the sharpness of cortical spikes in biophysical models, one needs to use a multi-
compartmental model in which action potentials are initiated in the axon hillock
rather than in the soma. Still, such a model would predict that spikes should
be even less sharp than at initiation site (since they are low-pass filtered) unless
adequate active properties (sodium channels) are included between the soma and
initiation site.

This example illustrates the idea that in many cases it might be more accurate
to use a good phenomenological model than one that incorporates many biological
components. In the following, I will consider that a realistic spiking model is one
that provides an accurate input-output relationship (in terms of spike trains), even
though some of the variables or parameters might only reflect effective properties.
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The question is then what aspects of this relationship are most significant. Many
studies have shown that adaptation and refractoriness are very important aspects
of neural function (Camera et al., 2006; Gerstner and Naud, 2009). I will focus in
the next section on spike initiation, then I will discuss electrophysiological classes.

2.2 Spike initiation and spike threshold

Spike initiation in neurons follows the all-or-none principle: spikes are produced
when the neuron is sufficiently excited, while no spike is initiated below that
threshold. This description suggests that there is a fixed voltage threshold above
which spikes are initiated, as in the standard integrate-and-fire model. However,
this is not exactly so in real neurons. First of all, the threshold depends on the
type of stimulation (Koch et al., 1995), because spikes are not instantly produced.
Secondly, spike threshold varies greatly in vivo: for example it depends on the pre-
ceding rate of depolarization (Azouz and Gray, 2000, 2003; Wilent and Contreras,
2005) and on the preceding interspike intervals (Henze and Buzsaki, 2001). Since
spikes are produced when the membrane potential reaches the threshold, under-
standing threshold dynamics might be as important as understanding membrane
potential dynamics, although it has not received as much attention. I have re-
cently looked at this problem with Jonathan Platkiewicz (Platkiewicz and Brette,
2009).

The exponential approximation

Spikes are initiated by the opening of sodium channels. In the Hodgkin-Huxley
formalism, the sodium current is INa = gNaPNa(ENa − V ), where gNa is the
maximum conductance, ENa is the sodium reversal potential, V is the membrane
potential and PNa is the proportion of open Na channels. We neglect inactivation
for the moment. Activation is very fast compared to all other time constants (a
fraction of ms). We make the approximation that it is instantaneous, so that the
proportion of activated Na channels at any time equals the steady-state activation
P∞a (V ), which can be empirically described as a Boltzmann function (Angelino
and Brenner, 2007):

P∞a (V ) =
1

1 + exp(−(V − Va)/ka)

where Va is the half-activation voltage (P∞a (V ) = 1/2) and ka is the activation
slope factor. Spikes are initiated well below Va (which is about −30 mV, Angelino
and Brenner (2007)), so that e−(V−Va)/ka >> 1 except during the action potential.
Similarly, ENa is very high (about 55 mV), so that ENa − V is not very variable
below threshold. We make the approximation ENa−V ≈ ENa−Va and we obtain:

INa = gNa(ENa − Va)e(V−Va)/ka = gL∆T e
(V−VT )/∆T

where ∆T = ka, gL is the leak conductance and VT = Va − ka log gNa
gL

ENa−Va

ka
.

This approximation is meaningful for spike initiation but not for spike shape (in
particular, sodium activation dynamics cannot be neglected at high currents, i.e.,
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Figure 2: Spike initiation and spike threshold (D-F extracted from Platkiewicz and
Brette (2009)). A. The I-V curve of the exponential integrate-and-fire (EIF) model. B.
Variants of the EIF can be fit to in vitro traces in response to somatic current injection
(from Badel et al. (2008)). C. I-V curves that include spike initiation as shown in A can be
obtained with single-electrode recordings in vitro with the Active Electrode Compensation
method, which consists in calibrating an electrode model using noise injection (Brette
et al., 2008)). D. In standard biophysical models, Na activation curves (black) seems to
be well fitted by Boltzmann functions on the entire voltage range (dashed blue), but fits
are not so good in the spike initiation zone (red: Boltzmann fit in the spike initiation
region; green: exponential fit). E. As a result, slope factors calculated from Boltzmann
fits vary widely depending on the fit region. F. Measured (blue) and predicted (red)
threshold in a simulated conductance-based model with fluctuating synaptic inputs (trace
in black). G. Time-varying threshold: blue is measured, red is theoretical. The bias is
partly predicted by the different definition for the threshold, and partly due to the fact
that the activation curve was poorly fitted by an exponential function in that voltage
region (close to half-activation voltage of the Na activation curve).
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during the action potential (Meunier, 1992)). With a reset (ignoring inactiva-
tion and other ionic channels), we obtain the exponential integrate-and-fire model
(Fourcaud-Trocme et al., 2003):

C
dV

dt
= gL∆T e

(V−VT )/∆T + gL(EL − V ) + I

In this model, VT is the voltage threshold for constant input currents I (i.e.,
such that f ′(VT ) = 0, where dV/dt = f(V )) and ∆T is the slope factor, which
measures the sharpness of spikes (see Fig. 2A): in the limit ∆T → 0 mV, the
model becomes a standard integrate-and-fire model with threshold VT . With
spike-frequency adaptation, it predicts the response of cortical neurons to so-
matic injection with good accuracy, in terms of spike timings (Badel et al., 2008;
Brette and Gerstner, 2005; Jolivet et al., 2008) (see Fig. 2B). I-V curves that
include spike initiation (Fig. 2A,C) can be obtained with single-electrode record-
ings in vitro with the Active Electrode Compensation method, which consists in
calibrating an electrode model using noise injection (Brette et al., 2008)) (see Fig.
2C).

Sharpness of spikes

Activation curves of Na channels measured in patch clamp show that the slope
factor is about ∆T = 6mV , with little variability across channel types (Angelino
and Brenner, 2007). When the I-V curve of cortical neuron is measured in vitro
with fluctuating somatic current injection, it indeed fits the exponential model
very well, but the slope factor is much smaller than expected: about 1.5 mV. This
value is smaller than any reported value in the 40 patch clamp studies collected by
Angelino and Brenner (2007). Jolivet et al. (2008) fitted an adaptive exponential
integrate-and-fire model to in vitro recordings (somatic current injection) with
very good results, but surprisingly the optimal slope factor was only 0.006 mV
— in other words it was a standard adaptive integrate-and-fire model. We also
tried to fit the same model to similar data from the 2009 INCF quantitative
modelling competition and found that the optimal slope factor was about 5%
of the difference between rest and threshold, meaning less than 1 mV. In fact
similar or better results were obtained without the exponential nonlinearity. The
winner of the competition used an IF model with adaptive threshold (Gerstner
and Naud, 2009). This apparent contradiction was noted recently by Naundorf
et al. (2006), who observed that spikes recorded in the soma of cortical neurons
are much sharper than expected from Hodgkin-Huxley dynamics, which started a
controversy (McCormick et al., 2007).

The reason for this surprising sharpness has in fact been known for quite a
while: spikes are not initiated in the soma but in the axon hillock (axon initial
segment, AIS) and then actively backpropagated to the soma (McCormick et al.,
2007; Yu et al., 2008). This property is also seen in numerical simulations of
multicompartmental models (Kole et al., 2008; Kole and Stuart, 2008). A two-
compartment model could not account for the increased sharpness because the
spike seen in the soma is a low-pass filtered version of the spike initiated in the
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AIS, so that, if anything, it should look less sharp in the soma. Since the correct
behavior appears in multicompartmental models, this discrepancy must be due to
the fact that two compartments are not sufficient to model the active backprop-
agation of the action potential. Indeed, when Na and Kv1 channels open, the
effective conductance increases, which reduces the electrotonic length λ6. There-
fore, a two-compartment model is not valid anymore after spike initiation. The
sharpening effect of backpropagation can be seen in the cable equation:

τm
∂V

∂t
= EL − V + ionic currents + λ2∂

2V

∂x2

It appears that the membrane equation is augmented by a diffusion term, which is
positive and large in the rising phase of the action potential between the initiation
site and the soma. Thus, for the same membrane potential V, the time derivative
gets larger as this diffusion term increases, which sharpens action potentials. What
is responsible of the sharpness of spikes seen at the soma is not only the fact that
spikes are remotely initiated (this fact alone would predict the opposite effect),
but also that they are actively back-propagated, with high sodium channel density
between the soma and initiation site (not only at the initiation site).

Although the increased sharpness in the soma is due to the backpropagation of
the action potential from the AIS (it looks softer at the initiation site), it cannot be
considered completely artefactual because a model with sharp threshold predicts
neuronal output more accurately than with softer threshold. Threshold variability,
however, is still determined by channel properties at the initiation site, where spike
initiation is soft. It is interesting to note that the fact that spikes are initiated in
the axon rather than in the soma makes cortical neurons closer to integrate-and-
fire models with hard threshold (considering only somatic current injection, not
the effect of dendrites), and one might wonder whether this might be a desirable
feature. It has been suggested that spikes are initiated in the axon hillock because
it is energetically cheaper, but it is not clear that it would make a significant
difference, because the initiation site is too close to the soma (less than 50 µm)
to change the minimum current to elicit a spike. Another possible advantage is
that it allows direct inhibitory control of spike output by synapses that specifically
target the axon hillock (DeFelipe et al., 1985).

Threshold dynamics

The spike threshold varies very significantly in vivo. This property has been
mainly attributed to sodium channel inactivation and potassium channels. We
have recently looked at these hypotheses in biophysical models. It is a difficult
problem to determine of the spike threshold when the input is fluctuating. Our
approach is a quasi-static approximation: we consider that Na channel inactivation
and voltage-gated conductances (e.g. K channels) are slow at the timescale of
spike initiation (which is fast). With some elementary algebra, we find that the

6which is about 500–1000 µm at rest in the AIS, while spikes are initiated only 50 µm away
from the soma.
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membrane equation reads:

C
dV

dt
= gtot∆T e

(V−θ)/∆T + gtot(EL − V )

with
θ = VT −∆T log h

gL
gtot

where gtot is the total non-sodium conductance and h is the Na inactivation vari-
able (1 − h is the proportion of inactivated Na channels). In the quasi-static
approximation, θ is indeed the voltage threshold. This equation (which we called
the threshold equation) provides an instantaneous value for the threshold, as a
function of Na channel inactivation and other voltage-gated channels.

We compared our theoretical prediction with the empirically measured thresh-
old in a standard biophysical conductance-based model (Fig. 2F,G). First of all,
that biophysical model, as other models we have tried, does not exhibit much
threshold variability. To increase threshold variability, we hyperpolarized Na in-
activation by 12.5 mV. The threshold equation could account for 83 % of the
variance. The differences between theory and measurement (in simulation) had
two causes: the first one is that threshold definition is different (short pulses vs.
slow inputs), but this difference can be calculated and compensated for; the sec-
ond one is that Na activation curves found in most models are in fact not so well
fitted by Boltzmann function, as in shown in Fig. 2D,E. Depending on the voltage
region where the curve is fitted, the slope factor ∆T (= ka) varies between 1.5 mV
and almost 6 mV. When fitted over the entire voltage range, one finds ka ≈ 6 mV,
which is close to experimentally reported values (similarly obtained) However,
in the spike initiation region it is closer to 1.5 mV, which implies low threshold
variability, but it is not clear whether this is also the case in patch clamp mea-
surements of Na currents. It might be that this low value of the slope factor near
spike initiation comes from attempts to fit the shape of action potentials in single-
compartment models, compensating for the absence of active backpropagation,
but this property comes at the expense of lower threshold variability. Therefore,
I suggest that the low threshold variability in most standard biophysical models
comes from an anomaly in the Na activation curve of the model, which might be
resolved by rexamining patch clamp measurements near spike initiation.

If we assume that h evolves according to a first-order kinetic equation, then it
is possible to describe the dynamics of the threshold θ by a differential equation
which depends on V , and can be approximated as

τh(V )
dθ

dt
= θ∞(V )− θ

where θ∞(V ) = VT − ∆T log h∞(V ) is the equilibrium value of the threshold.
A similar equation can be obtained when considering the effect of voltage-gated
conductances (e.g. potassium channels). The effect of an emitted action potential
on h is a partial reset: h → he−δt/τh , where δt is the duration of the spike.
This reset translates to a shift for the threshold: θ → θ + (δt/τh)∆T . In other
words, the spike threshold increases by a fixed amount after each spike. This
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effect was recently demonstrated in vitro (Badel et al., 2008) and explains in vivo
observations where the threshold was found to be inversely correlated with the
previous interspike interval (Henze and Buzsaki, 2001). In summary, we obtain
the following integrate-and-fire model with dynamic threshold:

dV

dt
= gL(EL − V ) + I

τh(V )
dθ

dt
= θ∞(V )− θ

and a spike is produced when V reaches θ. After spiking, both variables are reset:
V → Vr, θ → θ + δθ.

Effective postsynaptic potential

What is the effect of threshold adaptation on synaptic integration? There is a
simple way to address this issue when the threshold equation and the membrane
equation are linear (i.e., θ∞(V ) = aV +b). In this case, in response to a sequence of
input spikes, the membrane potential is a superposition of postsynaptic potentials
(PSPs):

V (t) = EL +
∑
i

PSPi(t− ti)

where ti is the time of incoming spike i, and so is the value of the threshold:

θ(t) = θ0 +
∑
i

PSTi(t− ti)

where PSTi is the postsynaptic threshold for incoming spike i, which is simply a
low-pass filtered version of the PSP (with filtering time constant τh). A spike is
produced when V (t) reaches θ(t), i.e., when∑

i

(PSPi(t− ti)− PSTi(t− ti)) = θ0 − EL

We call the difference the PSP − PST the effective postsynaptic potential, which
is the postsynaptic potential that is left when the effect of threshold adaptation
is discounted. It appears that the effect of threshold adaptation is similar to a
slightly delayed inhibition (with approximate delay τh), meaning that it shortens
the effective integration time constant.

2.3 Electrophysiological classes

Integrate-and-fire models (with some form of spike-frequency adaptation) seem
to be good models for regular spiking cortical neurons, but these simple models
cannot account for the variety of electrophysiological behaviors of real neurons
(see e.g. (Markram et al., 2004) for interneurons). Izhikevich (2003) introduced
a two-variable spiking model based on the quadratic model augmented by an
adaptive equation. Despite its simplicity, it can reproduce a large number of
electrophysiological signatures such as bursting or regular spiking. Different sets
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Figure 3: Neuron classes in the adaptive integrate-and-fire model (extracted from
Touboul and Brette (2008)). A. Subthreshold behavior of the model as a function of
a/gL and τm/τw. Light (dark) colors indicate class A (class B) parameters. Blue indi-
cates resonator mode (oscillations for any or almost any I). Green indicates integrator
mode (oscillations for any I). Pink indicates mixed mode (resonator if I is large enough,
otherwise integrator). B. Bursting and chaos. Each panel shows a sample response (V
and w) from the model, with different values of the reset Vr, and the adaptation map Φ,
which maps the value of the adaptation variable w at spike time to the value at the next
spike time. A burst with n spikes corresponds to an n-periodic orbit under the adapta-
tion map Φ. The last spike of each burst occurs in the decreasing part of Φ, inducing
a slower trajectory. The last panel shows a chaotic behavior. C. Bifurcation structure
with increasing Vr. Left: bifurcation diagram showing a period adding structure (orbits
under the adaptation map Φ with varying values for Vr). Fixed points indicate regular
spiking, periodic orbits indicate bursting, dense orbits indicate chaos. Right: zoom on
the bifurcation diagram (as indicated by the shaded box), showing a period doubling
structure.
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of parameter values correspond to different electrophysiological classes. Brette
and Gerstner (2005) proposed a variant of this model, the adaptive exponential
integrate-and-fire model (AdEx), in which the quadratic equation is replaced by
an exponential equation. Although these two models are qualitatively similar, the
AdEx model is quantitatively more accurate for time-varying inputs. The reason
is that the quadratic model is an abstract model that is equivalent to any type I
neuron model near bifurcation, for constant injected currents. Therefore, it applies
to near threshold inputs that change slowly compared to the typical interspike
interval. The situation is very different in vivo, where spikes are triggered by fast
fluctuations in synaptic current (Destexhe et al., 2003; Piwkowska et al., 2008).

The AdEx model is described by two variables, the membrane potential V and
an adaptation current w, whose dynamics are governed by the following differential
equations: {

C dV
dt = −gL(V − EL) + gL∆T exp

(
V−VT

∆T

)
− w + I

τw
dw
dt = a(V − EL)− w

(1)

When the membrane potential V is high enough, the trajectory quickly diverges
because of the exponential term. This divergence to infinity models the spike
(the shape of the action potential is ignored, as in the standard integrate-and-fire
model). When a spike occurs, the membrane potential is instantaneously reset
to some value Vr and the adaptation current is increased: V → Vr, w → w + b.
Although the differential system is only two-dimensional, the reset makes the
resulting hybrid system very rich. The AdEx model can reproduce many known
electrophysiological features: spike-frequency adaptation, regular and fast spiking,
phasic spiking, phasic and tonic bursting, post-inhibitory spiking and bursting, de-
layed spike inititation and delayed burst initiation, damped oscillations, overshoot
or undershoot of the voltage in response to a subthreshold current step, type I
and type II excitability.

The subthreshold behavior of the model can be analyzed using standard dy-
namical systems techniques. We were able to classify if as a function of two
quantities (Touboul and Brette, 2008): a/gL (ratio of adaptation and leak con-
ductances) and τm/τw (ratio of adaptation and membrane time constants, where
τm = C/gL), as shown on Fig. 3A. Light colors indicate loss of stability via
saddle-node bifurcation and dark colors via subcritical Andronov-Hopf bifurca-
tion. Subcritical Andronov-Hopf corresponds to f-I curves of type II, whereas
saddle-node bifurcations can lead to type I or II. The blue region corresponds to
the resonator mode (oscillations for any or almost any input current I), while the
green region corresponds to the integrator mode (no oscillation for any I) and the
pink region is the mixed mode (resonator if I is large enough, otherwise integra-
tor). Similar results are obtained in integrate-and-fire models with an additional
adaptive equation (Brunel et al., 2003).

To analyze the spiking patterns, we introduced the adaptation map Φ (Touboul
and Brette, 2008): because V is always reset to the same value Vr after a spike,
interspike intervals are determined by the value of the adaptation variable w at
spike time. The sequence (wn) of these values is the orbit of w0 under the adapta-
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tion map Φ, which maps w to the value of w(t) at spike time plus b for a solution
starting from (Vr, w). Thus, wn = Φn(w0). Regular spiking corresponds to a
stable equilibrium of Φ while bursting corresponds to cycles of Φ. Examples are
shown on Fig. 3B,C.

3 Mathematics of spiking models

3.1 General results

0

1

x(.)

t ϕ(t) ϕ2(t) 
Figure 4: The spike map ϕ: ϕ(t) is the time of the next spike for a trajectory starting
from reset at time t.

Spiking models such as integrate-and-fire models are complicated mathemati-
cal objects, because although many such models are defined by simple (and often
linear) differential equations, the threshold condition introduces discontinuities,
which complicates their dynamics. I have studied the dynamical properties of
one-dimensional integrate-and-fire models with time-varying inputs (Brette, 2004;
Brette and Guigon, 2003; Brette, 2008), which are defined by a differential equa-
tion governing the dynamics of the membrane potential x:

dx

dt
= f(x, t) (2)

and a reset: when x(t) reaches a threshold xt, then a spike is produced and x(·)
is instantaneously reset to xr. Up to a change of variables, one can set xt = 1
and xr = 0. The conditional reset makes this model a hybrid dynamical system.
This definition encompasses many types of integrate-and-fire models, including
models with conductance-based synapses. However, it does not include models
in which emitted spikes influence the subsequent dynamics (i.e., spike-frequency
adaptation).

I showed that two particular classes of spiking models have especially interest-
ing properties (Brette, 2004; Brette and Guigon, 2003):

• leaky models, such that ∂f
∂x ≤ α < 0;

• reflecting models, such that f(0, t) > 0 for all t.
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Standard integrate-and-fire models are leaky (and ∂f
∂x = −g/C, where g is the total

conductance and C is the membrane capacitance), the quadratic model (Ermen-
trout and Kopell, 1986) is reflecting. Models of these two classes have a unique
firing rate (independent of initial condition).

An important mathematical object for these models is the spike map ϕ, which
is defined such that a spike train produced by the model is the orbit of the first
spike time under ϕ (Fig. 4). More precisely, ϕ(t) is the minimal s ≥ t such that
the forward solution starting at reset at time t reaches threshold at time s. For
leaky and reflecting models, the spike map is (strictly) increasing on its range but
often discontinuous. This is a fundamental property which has implications for
the reliability of spike timing and phase locking to periodic inputs.

3.2 Reliability of spike timing

The responses of neurons to dynamic stimuli have been shown to exhibit high
reliability in vitro (Mainen and Sejnowski, 1995; Hunter et al., 1998; Fellous et al.,
2001; Beierholm et al., 2001) and in vivo (Berry et al., 1997; Nowak et al., 1997;
Sanchez-Vives and McCormick, 2000; Reich et al., 1997; Berry and Meister, 1998;
Bair and Koch, 1996). In this case, spike timing is reproducible on a trial-by-trial
basis up to a precision of 1 ms or less, even a long time after stimulus onset (1
s in Mainen and Sejnowski (1995)). This is a non-trivial property because one
might expect internal noise to accumulate as is the case with constant inputs (if
the interval between two successive spikes is ∆ + ξ, where ξ is some internal noise,
then the variability in the timing of the nth spike increases as

√
n). It is in fact a

convergence property of the class of spiking models defined above, which is robust
to noise, changes in initial condition and small parameter changes (Fig. 5A).

Mathematically proving this property turns out to be very difficult. In (Brette
and Guigon, 2003), I proposed an explanation for balanced inputs. When the input
is balanced, the current at threshold is often negative: f(xt, t) < 0. In all the time
intervals where it occurs, no spike is possible (Fig. 5B). In other words, spiking is
restricted to certain time intervals, independently of the initial condition. Using
the fact the spike map is increasing (on its range), each such interval maps to an
infinite number of intervals where spiking is also not possible. When constructing
these forbidden spiking intervals, the size of the remaining set seems to go to
zero, meaning that after some time, spiking is constrained in smaller and smaller
sets (Fig. 5C). Although the construction is convincing, the proof is not complete
because one would need to prove that the measure of the set of allowed spike times
tends to zero, which is hard to do without further assumptions.

In (Brette, 2008), I addressed the problem from a different angle, asking an
elementary dynamical system question: for a given initial condition, is there a
unique spiking solution defined on R? The answer is straightforward and positive
on R+ (forward solutions), but not on R− (backward solutions). It turns out
that for each initial condition, there is a countable (and possibility finite) number
of backward trajectories, with an increasing number of previous spikes. I called
the maximum number of previous spikes the degree of an initial condition (Fig.
5D). I showed that for a model with noisy synaptic conductances, the degree of
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Figure 5: Reliability of spike timing in spiking models. A. When a spiking neuron is
driven by a time-varying input (top), its output spike trains are reproducible over re-
peated trials (bottom, simulation with a noisy leaky integrate-and-fire model). B. The
sign of the current at threshold is shown with arrows. At the time when sign changes,
there is a trajectory that comes tangential to the threshold. The entire region between
this trajectory and threshold cannot be reached by any other trajectory, which forbids
any trajectory to spike in the time interval (t1, t2). C. By following all trajectories start-
ing from that forbidden interval, we obtain an unbounded region (red) which cannot be
entered by any trajectory. All trajectories are then constrained to spike in the remaining
region (white), which gets smaller and smaller as new forbidden intervals appear. D. An
alternative explanation is that most possible spike times correspond to trajectories which
have only a few previous spikes. Starting from initial condition x(t0) = x0, we can con-
struct several possible backward trajectories with an increasing number of spikes, which
is bounded by a number called the degree of the initial condition.
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initial conditions (x(t) = xr) is geometrically distributed. In other words, as
the number of spikes in a spike train increases, spike times are constrained in a
smaller and smaller set whose size decreases exponentially. I conjectured that the
set of points with infinite degree is just a single spike train. This would make the
transformation input spike trains 7→ output spike train a function. However, this
point is still lacking a sound mathematical proof.

Reliability of spike timing is a very important property for spike-based compu-
tation, because it implies that two spiking models receiving similar inputs should
synchronize. Together with the dual property, which is coincidence detection, it
implies that spiking models are well equipped to perform an important elementary
operation: detecting similarities (see section 5). Before addressing the problem of
coincidence detection in spiking neurons, I will shortly discuss how spiking models
encode periodic inputs.

3.3 Phase locking

Phase locking, also called mode locking, is the property of spiking models to re-
spond to periodic inputs with periodic spike trains, at particular phases of the
input signal. In the auditory litterature, phase locking often refers to the notion
of phase preference, i.e., the fact the distribution of spike phases with respect to
the input signal is sharp.

The response of spiking models to periodic inputs can also be understood
using the spike map ϕ (Brette, 2004; Brette and Guigon, 2003). Since ϕ(t +
T ) = ϕ(t) + T and ϕ is increasing (more precisely, on its range), the spike map
is the lift of an orientation-preserving circle map. When it is continuous, this
map is a homeomorphism of the circle, which is a very well known mathematical
object (Denjoy, 1932; Coddington and Levinson, 1955; Arnold, 1961; Herman,
1977; Keener, 1980; Veerman, 1989). It appears that the sequence of phases of
successive spikes is an orbit under the circle map. Therefore a fixed point or a
periodic point of the circle map corresponds to a periodic spike pattern for the
spiking model. The dynamics of leaky spiking models depends on the value of the
rotation number, defined as the ratio of the input frequency to the output spike
rate:

• It is rational if and only if the output pattern of spikes is (asymptotically)
periodic, the period being a multiple of the input period. When this pattern
is stable under perturbations, this is called phase locking or mode locking,
which has also been studied experimentally (Rescigno et al., 1970; Ascoli
et al., 1977; Guttman et al., 1980; Koppl, 1997). There is p : q phase
locking when a stable pattern of p spikes is produced every q periods of the
input. Thus when the model is phase-locked, noise does not accumulate
over time. However, several stable responses may coexist: if a p : q phase-
locked solution is shifted by a multiple of the input period, a new solution is
obtained, so that at least q distinct stable solutions exist (Fig. 6C, middle:
1:1 phase locking, bottom: 2:3 phase locking).

• When it is irrational, under some regularity conditions, the dynamics of the
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Figure 6: Phase locking (or mode locking) in spiking models (adapted from Brette and
Guigon (2003)). A. Input current is a 20 Hz sine wave with varying mean and amplitude.
B. For each input parameter value p, the model was run 2000 times with random initial
potential and firing probability is shown as grey level for t > 4.75 s. C. For three different
parameter values (0, 0.5, 1), spike trains for 10 trials of the model with noise and random
initial potential: top: no phase locking; middle: 1:1 phase locking; bottom: 2:3 phase
locking (2 spikes every 3 periods).
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model are topologically equivalent to the dynamics of a model with constant
input, which means that noise always accumulates over time, however small
it may be (Fig. 6C, top).

Although this dynamical theory was initially developed for homeomorphisms
of the circle, it also applies when the circle map is discontinuous (Brette, 2003).
Interesting properties appear when one looks at how spike patterns change with a
parameter (for example the input mean). It turns out that there is a qualitative
difference between the case when the input current is entirely above threshold
and when it crosses it (e.g., balanced input). When the current is entirely above
threshold, the rotation number is irrational on a positive measure set of parameters
(Herman, 1977), meaning that spike trains are sometimes not reproducible. In the
other case (balanced input), that set has measure zero, and thus is not observable
(Keener, 1980) (see Veerman (1989) for a rigorous mathematical proof): in other
words, phase locking is always observed. This appears on the top half of Fig. 6B.

This theory should be directly relevant to the study of auditory neuron re-
sponses in the brainstem, but surprisingly it has only be applied very recently
(Laudanski et al., in preparation).

3.4 Coincidence detection

We have seen in section 3.2 that the spike trains produced by spiking models in
response to time-varying inputs are reproducible, which implies that similar neu-
rons receiving the same inputs should synchronize (feedforward synchronization).
If this property is to have any impact at all, neurons must be able to detect coin-
cidences between spikes. Intuitively, it seems clear that a leaky neuron should be
more likely to spike in response to two coincident spikes than to two spikes that
are far away compared to the membrane time constant, because the effect of the
first spike on the membrane potential has vanished when the second spike arrives.
However, it is harder to quantify it outside of this toy situation, e.g. in active
neurons with a background of fluctuating synaptic activity. Fig. 7A shows that
spiking models can be very sensitive to the correlation of their input spike trains.
Clearly, this can occur only if the input is balanced, i.e., if the temporal average
of the total input is subthreshold, since otherwise the output firing rate is mainly
determined by the mean input and therefore is insensitive to correlations.

To understand the coincidence detection properties of active neurons, I propose
a new approach based on several observations about the properties of cortical
neurons in vivo: the membrane time constant is short (a few ms) compared to
typical interspike intervals; the membrane potential is stochastic, with a mean
well below threshold and the standard deviation is several times smaller than the
average distant to threshold (the distribution may not be Gaussian). Then the
coincidence detection effect can be quantitatively understood as illustrated in Fig.
7B. If the membrane potential probability is decreasing near threshold, then two
synchronous incoming spikes will be more likely to trigger a spike than two distant
ones. This extra firing probability can be calculated as a function of the membrane
potential distribution and the post-synaptic potentials, and it applies to tight
correlations (shorter than the integration time constant). Interestingly, it appears
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Figure 7: Coincidence detection in spiking models. A. An integrate-and-fire model re-
ceives 100 correlated input spike trains with increase correlation (generated with algo-
rithms from (Brette, 2009)). The output firing rate increases with input correlation. B.
Coincidence detection in active neurons. The purple area is the extra firing probability
with two input synchronous spikes, compared to two non-interacting spikes.
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that the background activity modulates the coincidence detection properties. The
approach can be extended to more complex models by looking at the distribution
of the stimulation parameter (current or conductance) instead of the potential.

With Cyrille Rossant, we started to study coincidence detection properties
using this approach and we were able to quantify the time constant for coincidence
detection when the membrane potential distribution reflects slow fluctuations. We
found that this time constant can be expressed as the product of the time constant
of the post-synaptic potential and of a factor defined by the membrane potential
distribution, which is always smaller than 1 (work in progress). In other words,
spiking models are more sensitive to fine correlations than expected from the value
of the membrane time constant.

4 Simulation of spiking neuron models

4.1 Algorithms

There are two families of algorithms for the simulation of neural networks: syn-
chronous or “clock-driven” algorithms, in which all neurons are updated simulta-
neously at every tick of a clock, and asynchronous or “event-driven” algorithms,
in which neurons are updated only when they receive or emit a spike. These two
families of algorithms were reviewed in (Brette et al., 2007), here I will briefly give
an overview of complexity issues.

Algorithmic complexity

First of all, how much time can it possibly take for a good algorithm to simulate
a large network? Suppose there are N neurons whose average firing rate is F
and average number of synapses is p. If all spike transmissions are taken into
account, then a simulation lasting 1s (biological time) must process N × p × F
spike transmissions. The goal of efficient algorithm design is to reach this minimal
number of operations (of course, up to a constant multiplicative factor). Note that
if the simulation is not restricted to spike-mediated interactions, e.g. if the model
includes gap junctions or dendro-dendritic interactions, then the optimal number
of operations can be much larger.

There are two techniques that are common to both types of strategies to min-
imize the number of operations. The first one is to express the model as a hybrid
system, as previously described. With this formalism, it appears clearly that spike
times need not be stored (except of course if transmission delays are included),
even though it would seem so from more phenomenological formulations. For ex-
ample, in the Spike Response Model (Gerstner and Kistler, 2002), it seems that
one would need to calculate the sum over all synapses at each timestep, but this
requirement disappears in the differential hybrid system form, where the cost of
a spike transmission is typically just one operation (for one synapse). The sec-
ond common strategy is to use linearities to reduce the number of equations. In
general, the number of state variables of a neuron (length of vector X) scales
with the number of synapses, since each synapse has its own dynamics. This fact

22



constitutes a major problem for efficient simulation of neural networks, both in
terms of memory consumption and computation time. However, several authors
have observed that all synaptic variables sharing the same linear dynamics can
be reduced to a single one (Wilson and Bower, 1989; Bernard et al., 1994; Lyt-
ton, 1996; Song et al., 2000). Some models of spike-timing dependent plasticity
(with linear interactions between pairs of spikes) can also be simulated in this
way (see e.g. Abbott and Nelson (2000)). However, some important biophysical
models are not linear and thus cannot benefit from this optimization, in particular
NMDA-mediated interactions and saturating synapses.

Clock-driven vs. event-driven

In a synchronous or “clock-driven” algorithm, the state variables of all neurons
(and possibly synapses) are updated at every tick of a clock: X(t) → X(t + dt).
With non-linear differential equations, one would use an integration method such
as Euler or Runge-Kutta (Press et al., 1993) or, for Hodgkin-Huxley models, im-
plicit methods (Hines, 1984); linear equations can be integrated exactly (each
update is then just a matrix product). Then, after updating all variables, the
threshold condition is checked for every neuron. Each neuron that satisfies this
condition produces a spike which is transmitted to its target neurons, updating
the corresponding variables (X← gi(X)). For integrate-and-fire models, the mem-
brane potential of every spiking neuron is reset. The total computational cost per
second of biological time is of order

Update + Propagation

cU ×
N

dt
+ cP × F ×N × p

where cU is the cost of one update and cP is the cost of one spike propagation;
typically, cU is much higher than cP but this is implementation-dependent. There-
fore, for very dense networks, the total is dominated by the propagation phase and
is linear in the number of synapses, which is optimal. However, in practice the first
phase is negligible only when the following condition is met: cP

cU
×F ×p×dt >> 1,

which is often not true in many practical situations.
The obvious drawback of clock-driven algorithms as described above is that

spike timings are aligned to a grid (ticks of the clock), thus the simulation is
approximate even when the differential equations are computed exactly. Other
specific errors come from the fact that threshold conditions are checked only at
the ticks of the clock, implying that some spikes might be missed. To solve this
problem, one must use exact event-driven algorithms in which spike timings are
computed exactly. Another advantage is a potential gain in speed due to not
calculating many small update steps for a neuron in which no event arrives. In
an asynchronous or “event-driven” algorithm, the simulation advances from one
event to the next event. Events can be spikes coming from neurons in the net-
work or external spikes (typically random spikes described by a Poisson process).
Such algorithms typically use complex data structures to handle events (efficient
queues) and elaborate algorithms to calculate spike times (e.g. (Brette, 2007) for
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models with exponential currents and (Brette, 2006) for models with exponential
conductances). With efficient structures, the total computational cost per second
of biological time is of order F ×N×p, which is optimal. However, in practice, the
constant implementation factor is very large because the algorithms are complex,
so that clock-driven algorithms are typically faster for dense networks (but slower
when the update phase dominates the total cost). The main drawback of exact
event-driven methods is that they are constrained to relatively simple types of
neuron models. For example, Hodkgin-Huxley models cannot be simulated in this
way.

In summary, event-driven algorithms are more precise than clock-driven algo-
rithms and have optimal computational complexity. However, this comes at a cost
of greater implementation complexity, which implies that they are less flexible and
applicable (not all models can be simulated) and they are typically slower for dense
networks (although only by a constant factor). Another advantage of clock-driven
algorithms is that they can be simulated with vectorization techniques, which we
have used to develop the Brian simulator (Goodman and Brette, 2008).

4.2 Brian: a spiking neural network simulator

Several successful neural simulators already exist (Brette et al., 2007), such as Neu-
ron (Carnevale and Hines, 2006) and Genesis (Bower and Beeman, 1998) for com-
partmental modelling, and NEST (http://www.nest-initiative.org) for large
scale network modelling. These simulators implement computationally efficient
algorithms and are widely used for large scale modelling and complex biophysical
models. However, computational efficiency is not always the main limiting factor
when simulating neural models. In many practical cases, it takes considerably
more time to write the code than to run the simulations. We developed the Brian
simulator (http://www.briansimulator.org) to minimize learning and devel-
opment time, while maintaining reasonable simulation efficiency (Goodman and
Brette, 2008).

Brian is an extension package for the Python programming language (Good-
man and Brette, 2008). A simulation using Brian is a Python program either
executed from a script or interactively from a Python shell. The primary focus is
on making the development of a model by the user as rapid and flexible as possi-
ble. For that purpose, the models are defined directly in the main script in their
mathematical form (differential equations and discrete events). This design choice
addresses three issues: flexibility, as the user can change the model by changing
the equations; readability, as equations are unambiguous and do not require any
specific knowledge of the Brian simulator to understand them; and simplicity of
the syntax, as models are expressed in their original mathematical form, with lit-
tle syntax to learn that is specific to Brian. Computational efficiency is achieved
using vector-based computation techniques.

Figure 8 shows a Brian script adapted from (Stürzl et al., 2000), which models
the neural mechanisms of prey localization by a sand scorpion. This model is fairly
complex and includes in particular noise and delays, which would make equivalent
code in Matlab or C very long, whereas the full script takes only about 20 lines
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Figure 8: Brian implementation of a model of prey localisation in the sand scorpion,
adapted from Stürzl et al. (2000). The movement of the prey causes a surface wave
(function wave in the code in panel C) which is detected by mechanoreceptors (the red
points in panel A) at the ends of each of the scorpion’s legs. The mechanoreceptors are
modelled by noisy, leaky integrate-and-fire neurons with an input current defined by the
surface wave displacement at the ends of the legs (object legs in the code, defined by the
equations eqs legs ). These neurons send an excitatory signal (the object synapses ex) to
corresponding command neurons (the blue points) modelled by leaky integrate-and-fire
neurons (object neurons with equations eqs neuron), which also receive delayed inhibitory
signals (the object synapses inh) from the three legs on the other side (the for loop). A
wave arriving first at one side of the scorpion will cause an excitatory signal to be sent to
the command neurons on that side causing them to fire, and an inhibitory signal to the
command neurons on the other side, stopping them from firing when the wave reaches the
other side. The result is that command neurons are associated to the directions of the
corresponding legs, firing at a high rate if the prey is in that direction. Panel B shows the
firing rates for the 8 command neurons in a polar plot for a prey at an angle of 60 degrees
relative to the scorpion.
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with Brian (plus the definition of parameter values). The script illustrates the fact
that the code is close to the mathematical definition of the model, which makes it
relatively easy to understand.

Computational efficiency

Brian can achieve very good performances by using the technique of vectorisation,
similar to the same technique familiar to Matlab users. The idea is to replace
loops by operations on large vectors, so that the interpretation overhead becomes
negligible. Brian uses vectorisation for both the simulation and the construction
of the model (e.g., initialisation of synaptic weights).

For example, for a single neuron i with state vector xi, the update step from
xi(t) to xi(t + dt) might be xi(t + dt) = Mxi(t) + b for a matrix M and vector
b. This operation is the same for every i so rather than looping through all the
neurons carrying out the same operation, we write a state matrix S whose columns
are the state vectors of each neuron. Now the loop carrying out the operation for
each neuron i can be written in one operation, S(t+dt) = MS(t)+B (where B is
a matrix with every column equal to b). The number of mathematical operations
is the same, but the interpretation overhead is reduced from N interpretation
operations for N neurons to 1 interpretation operation. Brian uses the NumPy
package for these vectorised operations. NumPy is written in optimised C code,
and for linear algebraic operations uses the Basic Linear Algebra Subprograms
(BLAS) application programming interface (API). This means that NumPy can
be combined with an implementation of the BLAS API that is optimised for the
specific details of the processor it is running on. For large networks, the time spent
on mathematical operations is much larger than the time spent on interpretation
operations and so Brian is very efficient. For smaller networks, the interpretation
overhead is much larger in proportion but in many situations it is not critical
because the simulation time is shorter too. The least favourable scenario for
Brian is the simulation of a small network for a long biological time.

4.3 Parallel simulations

We are currently working on distributed computing techniques for the Brian sim-
ulator, which I will briefly outline here.

First of all, independent simulations can be run with job scheduling software
such as Condor (Frey et al., 2002) and Boinc http://boinc.berkeley.edu. For
example, this would allow simultaneously running simulations for different param-
eter values or different inputs. In principle, this technique already works with exist-
ing tools but in practice, it can be complicated to deploy on a medium or large scale
(for example, to use all the unused computers in a lab) because of dependencies
(Python and scientific Python modules) and heterogeneities (different operating
systems). There are two (probably complementary) ways to deal with this prob-
lem: firstly, to use virtualization techniques to distribute pre-installed virtual ap-
pliances containing all the necessary software http://www.grid-appliance.org;
secondly, to use a recently developed package that interfaces Python with Condor
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and Boinc http://pymw.sourceforge.net.
Secondly, simulations can be parallelized on graphics processing units (GPUs):

these are inexpensive pieces of hardware (around several hundred euros) consist-
ing of a large number of parallel processing cores (in the hundreds for the latest
models). Using these cards gives the equivalent of a small parallel cluster in a
single machine at much lower cost. The vectorization techniques that we have
developed are very well adapted to this type of hardware. There are additional
difficulties with spike propagation and handling delays, but the required tech-
niques are mostly known (Nageswaran et al., 2009) and we have just started an
open source group to progress on the implementation http://groups.google.
fr/group/brian-on-gpu.

5 Computation with spikes

 

Integration Synchrony

Figure 9: The two operating modes of spiking neuronal models : in the integration
mode (perceptron), the neuron preferentially fires on one side of a hyperplane; in the
synchrony-based mode, the neuron preferentially fires close to the hyperplane.

5.1 Rate-based theory of neural computation

Let us start with a brief overview of the classical theory of neural computation,
based on firing rates. Several hypotheses lead to a description of the firing rate of
a neuron as a function of the firing rates of presynaptic neurons. If we assume that
synaptic integration is slow compared to the firing rate of neurons, i.e., if the leak
current is neglected (the “perfect integrator” model), then one can prove (Brette,
2004) that the output firing rate is the sum of the input firing rates, weighted
by the synaptic weights, or is zero when that sum is negative: F =

∑
[wkFk]+.

Alternatively, if the inputs are independent Poisson processes and the synaptic
weights wk are the success probabilities of presynaptic spikes, then the output
firing rate is F = f(

∑
wkFk), where f is a function, determined by the neuron

model. Finally, if the inputs are not assumed to be independent but their average
sum is greater than the spiking threshold and their variance is negligible, then
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a similar expression F = f(
∑
wkFk) is found, where f is the current-frequency

function of the neuron (Dayan and Abbott, 2001).
In these three cases, the operation that the neuron performs is close to that of

a perceptron (Minsky and Papert, 1969): the neuron signals the position of the
input vector (F1, . . . , Fn) with respect to a hyperplane defined by the synaptic
weights; the neuron fires more on one side of the hyperplane (Fig. 9).

However, the aforementioned hypotheses are not necessarily satisfied in the
nervous system. In particular, the effective membrane time constant is short in
vivo (Destexhe et al., 2003) while the average firing rate of cortical neurons is low
(Attwell and Laughlin, 2001; Lennie, 2003) ; the irregularity of neuronal discharge
in vivo (Shadlen and Newsome, 1998; Softky and Koch, 1993) and the membrane
potential distributions in vivo (DeWeese and Zador, 2006) suggest that excitation
is balanced by inhibition, which maintains the average input of neurons below the
spiking threshold. Thus, it might be that the cortical neuron does not act as an
integrator but rather as a coincidence detector (Konig et al., 1996), which suggests
that neurons might compute in a different way.

5.2 Spike-based theory of neural computation

In this section, I describe some work in progress about a theory of spike-based
computation that relies on selective synchronization.

Synchronization and neural computation

Neurons respond to repeated time-varying somatic current injections with repro-
ducible patterns of precisely timed spikes (Mainen and Sejnowski, 1995). This is a
stability property of spiking dynamical systems, which is shared by most spiking
neuron models (Brette and Guigon, 2003). It implies in particular that similar
neurons receiving similar dynamical inputs produce synchronous spike trains. On
the other hand, neurons are sensitive to the synchronization of their inputs: more
precisely, two input spikes are more likely to make a neuron fire when the time
between these inputs is shorter than the integration time constant of the neuron.
This sensitivity to spike correlations on fine timescales remains when the inputs
are stochastic and numerous (Moreno et al., 2002). A number of recent physio-
logical data tend to show that the integration time constant of neurons is short:
the membrane time constant is short in vivo (a few milliseconds), because the
intense synaptic activity increases the total conductance (Destexhe et al., 2003),
while the average firing rate of cortical neurons is probably not greater than 1 Hz,
according to metabolic arguments (Attwell and Laughlin, 2001; Lennie, 2003) ;
the variability of the spike threshold (Azouz and Gray, 2000) and the coordina-
tion between inhibition and excitation (Wehr and Zador, 2003) also participate
in shortening the integration time constant. Thus, neurons are equipped with
two dual properties: selective synchronization to similar inputs and coincidence
detection.

Let us consider a stimulus X(t) (belonging to some space S). This stimu-
lus, after a number of transformations (transduction, transformation by neuronal
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circuits), arrives at neuron A as an input FA(X), and in neuron B as an input
FB(X). When FA(X) = FB(X) (as functions of time), the spike trains elicited
by these two neurons are synchronous, which can be detected by a third neuron
receiving inputs from A and B. Thus, this elementary circuit signals the identity
FA(X) = FB(X). If we consider more presynaptic neurons, the circuit signals the
identities F1(X) = F2(X) = . . . = Fn(X), or, depending on the properties of the
coincidence detector neurons, a subset of them. This operation has been described
in a more specific case by Hopfield and Brody under the name “many-are-equal”
(Brody and Hopfield, 2003). In their model, they considered static inputs and
affine operations (synaptic weights and bias), and a coincidence detection mecha-
nism relying on phase locking to a common oscillatory input, but the mechanism
can in fact be generalized.

It is interesting to focus on the case when the operations Fi are linear (but not
necessarily scalar). The operation performed by the synchrony-based mechanism
is then recognizing the identity (FA − FB)(X) = 0, i.e., the property that X be-
longs to the kernel of the linear operator (FA − FB), which is a linear space. If
several neurons are considered, then the operation consists in detecting whether
X belongs to the intersection of kernels of (Fi − Fj). Thus, the operation per-
formed by such a synchrony-based mechanisms (in the case of linear operations) is
recognizing whether X belongs to some linear subspace. This is to be contrasted
with the operation performed by a perceptron, which is detecting whether X is
on a given side of a hyperplane (see Fig. 9). This description generalizes to non-
linear operations (the linear subspace is replaced by a manifold), but a number of
sensory problems can already be expressed in this simple linear framework, as is
detailed in next section.

Synchrony-based computation in sensory modalities

A number of elementary percepts can be expressed in the proposed framework. In
audition, the pitch of a sound corresponds in general to the period of the signal.
Thus, the sounds with the same pitch, corresponding to the fundamental frequency
f0 = 1/T , are all those sounds S(t) such that S(t+T ) = S(t) for all times t. This
set is a linear subspace of sounds, and whether a given sound belongs to that set is
signaled by the identity FA(S) = FB(S), where FA if the application that delays
the sound by time T and FB is the identity. This description is similar to the
classical model of Licklider, based on the autocorrelation of the signal (Licklider,
1951).

The problem of sound source localization can be expressed in a similar way
(see Fig. 10). The arrival time of a sound to the two ears depends on the azimuth
of the sound source. If only the interaural time differences are taken into account,
the sound arriving at the ears are S1(t) = S(t − d1) and S2(t) = S(t − d2). The
azimuth of the source can be inferred from the difference d2 − d1. That difference
is signaled by the identity F1(S1) = F2(S2), where F1 is the transformation that
delays the sound by time d2 and F2 by time d1. This description is close to
the classical Jeffress model (Jeffress, 1948). More generally, taking into account
the filtering differences between the two ears, due to scattering by the head and
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Figure 10: Sound localisation model based on selective synchronisation (adapted from
Goodman, Pressnitzer and Brette (2009)). A. Sounds are filtered by the head and pinnae
in a way that depends on the azimuth and elevation of the source. The filters FL (left) and
FR (right) are different for both ears, which can be used to locate the source. B. Signals
at the two ears are further processed by the auditory periphery and brainstem. When
the combination of acoustical and neural filtering matches on both side, corresponding
neurons fire synchronously, which can be detected by a binaural neuron. C. Color-coded
firing rate of location-specific neural assemblies (horizontal: azimuth, vertical: elevation).
The white cross is the location of the sound, the black cross corresponds to the neural
assembly with maximum activity.
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pinnae, the sound arrives at the two ears as (G1 ∗S,G2 ∗S), where the filters G1 et
G2 (∗ is the convolution) are location-specific. Inferring the spatial location of the
sound amounts to identifying the couple (left sound, right sound) as an element of
a linear subspace, which is the image of the application S 7→ (G1∗S,G2∗S). This
identification can be done with the identity F1(S1) = F2(S2), where F1(S) = G2∗S
and F2(S) = G1∗S, or F1(S) = U∗G2∗S and F2(S) = U∗G1∗S for any linear filter
U (for example a band-pass filter). This framework applies to all wave localization
problems, whether acoustical or not (mechanical, electrical), and whether there
are two or more receptors (for example, the localization of preys by sand scorpions
(Stürzl et al., 2000)).

The problem of identifying an odor can also be expressed in this framework.
An odor is a mixture of a number of components in specific proportions (more
precisely, an odor can be defined by its affinity to each one of the olfactory recep-
tors, which are sensitive to a large number of odorants), and the olfactory system
is able to identify an odor independently of its overall concentration (Uchida and
Mainen, 2008). Thus, if ci is the concentration of component i, then an odor is the
(half-)line (λc1, . . . , λcn) (λ > 0). To explain the concentration invariance of the
olfactory system, Hopfield and Brody assume that the olfactory receptors encode
the concentrations of odorants in a logarithmic and static fashion, and consider
neurons with various biases (Brody and Hopfield, 2003). These hypotheses are in
fact unnecessary. One can simply consider a set of olfactory receptors for a wide
distribution of affinities, reacting to odorant i by an activation S(ci/si), which
may be dynamical (with adaptation for example). Then two receptors i and j
produce synchronous spike trains if the vectors (ci, cj) and (si, sj) are collinear.
Thus a given odor activates sets of synchronous receptors, in an odor-specific way.
In audition, the spectral aspect of the timbre of sounds can be described in a simi-
lar way (where the timbre is intensity-invariant and odor components are replaced
by frequency bands).

In vision, a number of elementary percepts can be expressed in a similar fash-
ion, such as lines with a specific orientation, periodic textures and interocular
disparity. There is an original and interesting aspect of color perception, which
deserves closer attention. Philipona and O’Regan recently showed that colors that
are considered as “pure” in most human cultures (some specific hues of red, green,
blue and yellow) correspond to particular ways in which natural light interacts
with surfaces and photopigments (Philipona and O’Regan, 2006). There are three
types of photopigments, so that when the illumination conditions change, a given
surface seen from the photoreceptors spans a three-dimensional linear space. For
these 4 “pure” colors, that space is only a two-dimensional space (plane) or a
one-dimensional space (line). Thus, recognizing one of those pure colors amounts
to detecting whether the color signal (R, G, B) belongs to a specific plane or line.
In both cases, that operation can be performed as previously described with a
neuronal synchronization mechanism.

The elementary sensory problems mentioned above can thus be expressed in
terms of detecting whether the stimulus belongs to some linear subspace, and that
sort of operation is most directly implemented by neurons with synchrony-based
mechanisms, rather than with integration mechanims.
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Learning synchrony-based neural mechanisms

The previous discussion shows that a number of elementary perceptual operations
can be simply implemented with synchrony-based neural mechanisms, but it does
not allow us to conclude that those mechanisms are indeed used by the nervous
system. That question must be addressed by experimental work and the study
of physiological, anatomical and psychophysical data. However, a complementary
theoretical aspect can provide some additional information about the physiologi-
cal plausibility of those mechanisms: the investigation of synaptic plasticity in the
proposed sensory models. Indeed, showing that, in realistic conditions, the pre-
viously described neural circuits can naturally emerge under the action of known
synaptic plasticity mechanisms is a strong point in favor of those models. It seems
plausible given the recent results about spike-timing dependent synaptic plastic-
ity, since it has been shown that these physiological mechanisms favor correlated
inputs (Gerstner et al., 1996; Song et al., 2000; Senn, 2002).

How can synchrony-based neural mechanisms develop? A simple general pro-
cess can be described in two stages, as follows. Stimuli S are represented through
a large number of transformations Fi by a set {Fi(S)}, which are inputs to neurons
(the encoding stage). In the context of audition, these transformations can corre-
spond to the spectral decomposition of sounds by the basilar membrane, the inner
hair cells and the auditory nerves, and possibly by subsequent cochlear nucleus
neurons. In the context of olfaction, this multiple transformation is performed by
the olfactory receptors, which have a wide distribution of affinities to odorants.
These transformed stimuli Fi(S) trigger stimulus-specific spike trains, with a spe-
cific correlation structure, as previously described. In a second layer (whether
anatomically distinct or not), neurons receive inputs from the first layer (the de-
coding stage). Under the effect of spike-timing dependent plasticity, these neurons
select groups of correlated inputs, as described for example in (Song and Abbot,
2001). From a mathematical point of view, the synaptic plasticity mechanism
tends to detect and select subspaces with low dimensionality.

6 Discussion

Neurons compute mainly with action potentials or “spikes”, which are stereotyp-
ical electrical impulses. Over the last century, the operating function of neurons
has been mainly described in terms of firing rates, with the timing of spikes bear-
ing little information. This classical point of view has led to a considerable number
of developments in computing, from the perceptron (Minsky and Papert, 1969) to
modern artificial neural network theories for pattern recognition (Bishop, 1996).
However, recent experimental evidence and theoretical studies show that the rel-
ative spike timing of inputs has an important effect both on computation and
learning in neurons: correlated inputs are more likely to make neurons fire in vivo
(Usrey et al., 2000) (which is confirmed by models (Moreno et al., 2002)), and
synaptic plasticity mechanisms favor correlated synaptic inputs (Gerstner et al.,
1996; Song et al., 2000; Senn, 2002). Besides, neurons are known to respond to
dynamic somatic input (in vitro) with precisely timed spikes (Street and Manis,
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2007; Mainen and Sejnowski, 1995) and some sensory tasks can be performed so
fast that they probably rely on spike timing rather than firing rate (Thorpe et al.,
1996; VanRullen et al., 2005). This evidence has triggered considerable interest
for spiking neuron models in computational neuroscience (Gerstner and Kistler,
2002), but the theory of computation in those models is sparse, although there
has been a lot of progress about the dynamics of spiking neural networks (Brunel,
2000; Brunel and Hakim, 1999).

Spiking models can be described as hybrid systems, i.e., sets of differential
equations and discrete events (spikes). Virtually all models in the litterature can
be described in this formalism. The sodium current, which is responsible spike ini-
tiation, can be approximated by an exponential function near threshold, which sug-
gests a new spiking model: the exponential integrate-and-fire (Fourcaud-Trocme
et al., 2003). Although this is more accurate than the hard threshold of stan-
dard integrate-and-fire models, it turns out that spikes are in fact much sharper
than suggested by sodium channel patch clamp measurements, because of active
backpropagation between spike initiation site (in the axon hillock) and soma. It
explains why conventional integrate-and-fire models (with adaptation) are in fact
not a bad approximation of cortical neurons (as far as somatic injection is con-
cerned). The spike threshold also adapts, both to the membrane potential and to
emitted spikes. This adaptation, due to sodium channel inactivation and possibly
adaptive voltage-gated conductances (potassium), shortens effective postsynaptic
potentials, which makes the temporal resolution of neurons finer. Such models
that include spike initiation (either exponential or quadratic) can also reproduce
many different spiking patterns such as bursting or post-inhibitory spiking when
augmented with an adaptive equation.

Spiking models require specific techniques for efficient simulation. For large
and dense networks, the computational cost of simulation is dominated by synaptic
transmissions, although in many practical situations, the cost of state updates
is significant or even dominant in clock-driven simulations. We have developed
vectorization techniques which allow efficient simulation in a high-level language
(Python), providing great flexibility. The simulator is developed as an open source
project (Brian, http://www.briansimulator.org) and it should be able to run
on graphics processing units in the near future, providing great efficiency without
expensive dedicated hardware.

Because of the discontinuities introduced in the dynamics of spiking models
by the threshold condition, these models are difficult to analyze mathematically.
Spiking models exhibit two important dual properties: selective synchronization
and coincidence detection. Spiking models respond with precisely timed spike
trains to time-varying inputs, which implies that neurons receiving similar inputs
should synchronize. The dual property is coincidence detection: a neuron is more
likely to fire when input spike trains are finely correlated than when they are
uncorrelated. To quantify this property in realistic situations, when neurons are
subjected to background synaptic activity, I propose a stochastic approach based
on the membrane potential distribution. These two mechanisms suggest that
neurons are well equipped to perform a computationally interesting elementary
operation: detecting similarities.
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Since synaptic plasticity mechanisms favor synchronous inputs (Gerstner et al.,
1996; Song et al., 2000; Senn, 2002), I propose to investigate more specifically com-
putational mechanisms based on synchrony codes. In audition for example, the
fine temporal structure of sounds is thought to play an important role in several
aspects of auditory perception, including pitch perception and the spatial local-
ization of sounds (Lorenzi et coll., 2006), but it is still unclear how this temporal
structure is extracted with neuronal mechanisms. A number of simple perceptual
properties can be identified as low-dimensional subspaces of sensory space: for
example, an odor is the (half-)line (λc1, . . . , λcn) (λ corresponds to odor intensity)
and the location of a sound source corresponds to the linear subspace which is the
image of the the location-specific binaural filtering operation S 7→ (FL ∗S, FR ∗S)
(S is the sound). This lower dimensionality translates to synchronous spiking
in neurons, which increases the spiking probability of target neurons. We have
shown that this model does indeed provide very good estimates of sound source
location in realistic settings (using measured head-related transfer functions to
reproduce a virtual acoustic environment), and we are currently trying to address
other perceptual problems.
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