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Abstract 12 In a single-electrode current clamp recording, the measured potential includes both the 13 response of the membrane and that of the measuring electrode. The electrode response is 14 traditionally removed using bridge balance, where the response of an ideal resistor representing 15 the electrode is subtracted from the measurement. Because the electrode is not an ideal resistor, 16 this procedure produces capacitive transients in response to fast or discontinuous currents. 17 More sophisticated methods exist, but they all require a preliminary calibration phase, to 18 estimate the properties of the electrode. If these properties change after calibration, the 19 measurements are corrupted. We propose a compensation method that does not require 20 preliminary calibration. Measurements are compensated offline, by fitting a model of the neuron 21 and electrode to the trace and subtracting the predicted electrode response. The error criterion 22 is designed to avoid the distortion of compensated traces by spikes. The technique allows 23 electrode properties to be tracked over time, and can be extended to arbitrary models of 24 electrode and neuron. We demonstrate the method using biophysical models and whole cell 25 recordings in cortical and brainstem neurons. 26 Keywords: 27 
• electrode compensation 28 
• intracellular recording 29 
• patch clamp 30 
• current clamp 31  32  33 34 
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Introduction 35 Intracellular recordings in slices have been used for decades to probe the electrical properties of 36 neurons (Brette et Destexhe, 2012). These recordings are done using either sharp 37 microelectrodes or patch electrodes in the whole cell configuration. In both cases, when a single 38 electrode is used to pass the current and to measure the potential, the measurement is biased by 39 the electrode. As a first approximation, the electrode can be modeled as a resistor (resistance 40 Re). Thus the measurement is the sum of the membrane potential and of the voltage across the 41 electrode, which, by Ohm's law, is Re.I for a constant injected current I (in the current-clamp 42 configuration). Therefore, the distortion due to the electrode can be significant when the 43 electrode resistance is high compared to the membrane resistance. Sharp microelectrodes have 44 a thin tip and therefore a high resistance (Purves, 1981). The resistance of patch electrodes is 45 usually lower, since the tip is wider, but it may be high in some situations, for example in vivo 46 (Anderson et al., 2000; Wehr et Zador, 2003) or in dendrites (Davie et al., 2006; Angelo et al., 47 2007) and axons (Shu et al., 2007). Perforated patch clamp recordings, in which the membrane 48 is perforated by antibiotics in the electrode solution to avoid cell dialysis, also have high access 49 resistance. Low resistance electrodes are also an issue in cells with low membrane resistance. 50 Finally, in very long patch recordings with low resistance electrodes, the electrode often clogs up 51 with time, which increases the resistance. 52 Thus it is often necessary to compensate for the electrode bias in single electrode recordings. 53 The standard compensation technique is bridge balance, and is generally done directly on the 54 electrophysiological amplifier. It consists in subtracting Re.I from the uncompensated recording, 55 where Re is the estimated electrode resistance (usually manually adjusted using the response to 56 current pulses). There are two issues with this method. First, even if Re can be accurately 57 estimated, the electrode is not a pure resistor: it has a non-zero response time, due to capacitive 58 components. This produces artifacts in the compensated trace, as shown in Figure 1. When a 59 current pulse is injected (top left), the bridge model over-compensates the trace at the onset of 60 the pulse, resulting in capacitive transients of amplitude Re.I (Fig. 1, middle left). These 61 transients become an issue when fast time-varying currents are injected, such as simulated 62 synaptic inputs (Fig. 1, top right). In this case, capacitive transients distort the compensated 63 trace, which may even make the detection of action potentials difficult (Fig. 1, middle right). The 64 second issue is that the capacitive component of the electrode can make the estimation of Re 65 difficult, given that Re cannot be estimated in the bath (it changes after impalement). 66 A recent technique solves this problem by calibrating a model of the electrode using white noise 67 current (Brette et al., 2008). However, as with other methods, the recordings may be corrupted 68 if electrode properties change after calibration. To address this issue, we propose a model-based 69 method to compensate current clamp recordings, which does not require preliminary 70 calibration. Instead, the electrode model is fitted offline, using the recorded responses to the 71 injected currents, with a special error criterion to deal with neuron nonlinearities and spikes. An 72 example of compensated trace is shown in Fig. 1 (bottom). The technique is demonstrated with 73 biophysical neuron models and current clamp recordings of cortical and brainstem neurons. We 74 also propose quantitative tests to evaluate the quality of recordings. 75  76 
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Methods 77 
Experimental preparation and recordings 78 We recorded from pyramidal cells in slices of the primary auditory cortex of mice (aged P9-15), 79 at room temperature (25 ± 2°C), as detailed in (Rossant et al., 2011c). In addition, we recorded 80 from the ventral cochlear nucleus in mice brainstem slices (aged P10). The principal cells of the 81 cochlear nucleus were identified based on their voltage responses to de- and hyperpolarizing 82 current pulses (Fujino et Oertel, 2001). Whole-cell current-clamp recordings were done with a 83 Multiclamp 700B amplifier (Axon Instruments, Foster City, CA, U.S.A) using borosilicate glass 84 microelectrodes with a final tip resistance of 5–10 MΩ. The pipette capacitance compensation 85 was applied by using the amplifier’s circuits, but we did not apply bridge balance on the 86 amplifier. The signals were filtered with a low-pass 4-pole Bessel filter at 10 kHz, sampled at 20 87 kHz and digitized using a Digidata 1422A interface (Axon Instruments, Foster City, CA, U.S.A). In 88 order to test that the electrode compensation method correctly distinguishes electrode and 89 neuron resistance (Fig. 5), we increased the neuron’s input resistance by applying the h-current 90 blocker ZD7288 (10µM) to the slice bath. A small–moderate blockade of Ih, which is a large 91 contributor of the input resistance of all cells in the ventral cochlear nucleus (Cao et Oertel, 92 2011), gave rise to significant increases of the input resistance without affecting the spiking 93 properties. 94  95 
Electrode compensation 96 We consider a linear model of the neuron and electrode. Each element is modeled as a resistor + 97 capacitor circuit (see Fig. 2A). The equations are:  98 
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where Vneuron is the membrane potential of the neuron, Ue is the voltage across the electrode, τm 100 and τe are the membrane and electrode time constants, R and Re are the membrane and 101 electrode resistance, and Vr is resting potential. The 5 parameters are adjusted to minimize the 102 Lp error between the model prediction Vmodel and the raw (uncompensated) measured trace Vraw: 103 ep=(∫|Vmodel(t)-Vraw(t)|p)1/p 104 where p is a parameter (p = 0.5 is a good choice). After optimization, the compensated 105 membrane potential of the cell is Vraw-Ue. 106 To perform the optimization, we use the downhill simplex algorithm (implemented as function 107 
fmin in the Scipy numerical library for Python). Since the equations are linear, the model 108 prediction is computed by applying a two-dimensional linear filter to the injected current (see 109 
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Appendix). Although we used the simple model above in this paper, it may be replaced by more 110 complex models by simply specifying the model equations in our tool. The corresponding linear 111 filter is automatically calculated from the differential equations of the model (see Appendix). For 112 the case when the equations are not linear, we also implemented a more complex method using 113 a generic model fitting toolbox (Rossant et al., 2011b), based on the Brian simulator (Goodman 114 et Brette, 2009)  for the model simulation, and on the parallel computing library Playdoh 115 (Rossant et al., 2011a) for the optimization. Initial parameters for the optimization can be 116 selected by the user. A good practice is to use the estimated parameters for the initial part of a 117 recording as initial parameters for the subsequent part. 118 The electrode compensation software is freely available as part of the Brian simulator 119 (http://briansimulator.org). 120 
 121 
Currents 122 We injected three different types of time-varying currents. 123 
Filtered noise. This is a low-pass filtered noise (Ornstein-Uhlenbeck process) with 10 ms time 124 constant. 125 
Current A. This corresponds to current A in (Rossant et al., 2011c). It is a sum of a background 126 noise and exponentially decaying post-synaptic currents (PSCs). The background noise is an 127 Ornstein-Uhlenbeck process (i.e., low-pass filtered white noise) with time constant τN=10 ms. 128 The PSCs occur every 100 ms with random size: PSC(t)=αwe-t/τs, where τs = 3 ms,  α=665 pA is a 129 scaling factor, and w is a random number between 0.04 and 1. 130 
Current B. This corresponds to current B in (Rossant et al., 2011c). It is a sum of random 131 excitatory and inhibitory PSCs (with time constants τe=3 ms and τi=10 ms, respectively) with 132 Poisson statistics, in which "synchrony events" are included. These events occur randomly with 133 rate λc, and for each event we pick p excitatory synapses at random and make them 134 simultaneously fire. 135 
 136 
Biophysical model 137 In Figure 3, we tested the compensation method in a model consisting of a neuron and an 138 electrode. The electrode is modeled as a resistor + capacitor circuit. The neuron model is a 139 biophysical single-compartment model of a type 1-c neuron of the ventral cochlear nucleus, as 140 described in (Rothman et Manis, 2003). The same model is used in Fig. 5A. 141 We used three sets of currents. Set 1 is a filtered noise, which makes the neuron fire at 1-5 Hz. 142 Set 2 is current B with p = 15 and λc = 5 Hz, which makes the neuron fire at 5-7 Hz. Set 3 is the 143 same as set 2, but scaled to make the neuron fire at 15-20 Hz. 144  145 
Spike detection 146 To detect spikes in compensated traces (Fig. 6), we first detect all times at which dV/dt changes 147 sign, and register the value of V at these times. We build a histogram of these values (20 bins in 148 
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our recordings) and split it in two modes according to a decision threshold that is automatically 149 determined as follows. We first discard all values below the median to increase robustness. We 150 then look at local minima in the histogram. If there is none, the middle between the median and 151 the highest value is taken as the decision threshold. If there is only one, it is chosen as the 152 decision threshold. If there are two or more, the detection threshold is either the middle of the 153 longest sequence of identical local minima, or the smallest local minimum. More sophisticated 154 clustering methods could also be used but this simple approach proved sufficient for our 155 recordings. 156 Voltage values in the histogram are considered as spike peaks when their voltage is greater than 157 the decision threshold. Spike detection quality can be directly assessed from the separation of 158 the two modes, using signal detection theory. Assuming that the two modes are normally 159 distributed, we can calculate the probability that a spike peak is successfully detected (true 160 positive), and the probability that a subthreshold peak is mistakenly classified as a spike peak 161 (false positive), according to the following equations: 162 
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 is the 164 cumulative distribution function of a Gaussian distribution, sV  is the detection threshold, and 165 
1μ , 2μ , 1σ , 2σ  are the parameters of the two distributions. Spike detection is reliable when 166 TP/P is close to 1 and FP /N is close to 0. 167  168 

Quality coefficient 169 A quality coefficient is calculated to assess the quality of electrode compensation, based on the 170 idea that the voltage at spike peak should not depend on the current injected after spike 171 initiation (Fig. 8). First, we try to predict the voltage at spike peaks based on the voltage before 172 spike initiation. For each spike, a linear regression is performed on the compensated trace in a 173 temporal window from 10 ms to 2 ms before spike peak. We then compute the best linear 174 prediction of the spike peak, given the two regression parameters (intercept and slope). The 175 quality coefficient is defined as the Pearson correlation between the prediction error and the 176 mean input current around spike peak (2 ms before to 1 ms after). 177  178 
Two-compartment model 179 In Fig. 9, we simulated a pyramidal neuron model with two compartments representing the 180 soma and dendrites (Wang, 1998), with a filtered noisy current injected at the soma. The 181 electrode is modeled as an RC circuit with Re=200 MΩ and τe=0.2 ms. In Fig. 9B, the model used 182 for compensation also has a dendritic current, following the electrical circuit shown in the figure. 183 
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 184 
Adaptive threshold model 185 In Fig.10E-G, we used an exponential integrate-and-fire neuron model (Fourcaud-Trocme et al., 186 2003) with adaptive threshold, as described in (Platkiewicz et Brette, 2010a, 2011a). The 187 membrane equation describing the dynamics of the membrane potential V contains a leak 188 current and an exponential approximation of the sodium current: 189 
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where msm 5=τ  is the membrane time constant, mVEl 70−= is the leak reversal potential, 191 
mV1=Δ  characterizes the sharpness of spike initiation, Ω= MRm 100  is the membrane 192 resistance and I is the injected current. The voltage diverges quickly to infinity once it exceeds 193 the dynamic threshold θ , which adapts to V through the following equation, based on an 194 analysis of sodium inactivation dynamics in Hodgkin-Huxley models: 195 
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where )(log)( VhkVV aT ∞∞ −=θ  is the steady-state threshold, determined by mVVT 67−= ,  197 the minimum threshold, mVka 3.4=  is the Boltzmann factor of the sodium activation function, 198 and ∞h  is the inactivation function: 199 
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where mVVi 69−=  is the half-inactivation voltage of sodium channels. These values ensure that 201 the spike threshold is variable (Platkiewicz et Brette, 2011a). 202  203 
Results 204 
Principle 205 The principle is illustrated in Fig. 2A. A time-varying current is injected into the neuron and the 206 raw (uncompensated) response (neuron + electrode) is recorded. We try to predict this 207 response with a model including both the neuron and electrode. We used a simple linear model 208 for both elements (resistor + capacitor), but it could be replaced by any parametric model. We 209 calculate the prediction error, and we adjust the model parameters so as to reduce the error. The 210 process is iterated until the error is minimized. When the model trace is optimally fitted to the 211 raw recorded trace, we subtract the predicted electrode voltage from the raw trace to obtain the 212 compensated trace. 213 Fig. 2B shows an example of successful compensation. The optimized model trace (left, solid) 214 
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tracks the measured trace (gray), but not with perfect accuracy. In particular, the action 215 potential is not predicted by the model, which was expected since the model is linear. This is not 216 a problem since we are only interested in correctly predicting the electrode response, which is 217 assumed to be linear, in order to subtract it from the raw trace. Therefore it is not important to 218 predict neuronal nonlinearities, as long as they do not interfere with the estimation of the 219 electrode response. Fig. 2B (right) shows the compensated trace, which is the raw trace minus 220 the electrode part of the model response. 221 However, neuronal nonlinearities, for example action potentials, may interfere with the 222 estimation of the electrode model, as is illustrated in Fig. 2C. Here the neuron fired at a higher 223 rate. The model parameters are adjusted to minimize the mean squared error between the 224 model trace and the raw trace (left). To account for spikes, the linear model overestimates the 225 electrode response (left, inset). As a result, the compensated trace is heavily distorted (right 226 traces). The distribution of the difference between raw trace and model trace (Vraw-Vmodel) is 227 shown on the right. The mean is zero, by construction, because the model minimizes the mean 228 squared error. But the histogram peaks at a negative value, which means that most of the time, 229 the model overestimates the raw trace. This is balanced by a long positive tail due to the spikes. 230 To solve this problem, we replace the mean square error by a different criterion which reduces 231 the influence of this long tail, that is, of "outliers". Instead of minimizing the mean of (Vraw-232 Vmodel)², we minimize the mean of |Vraw-Vmodel|p, where p<2. This is called the Lp error criterion. In 233 this way, the error is compressed so that large deviations (action potentials) contribute less to 234 the total error. The result is shown in Fig. 2D with p=0.5. The compensated trace is now much 235 less distorted and the distribution of differences between model and raw traces peaks near zero. 236  237 
Validation with a biophysical model 238 We first test the method using a biophysical neuron model, together with a resistor-capacitor 239 model of the electrode (Fig. 3). To evaluate our method in a challenging situation, we used a 240 highly nonlinear single-compartment model of cochlear nucleus neurons (Rothman et Manis, 241 2003), which includes several types of potassium channels. This biophysical model is used to 242 generate the raw traces, but not to compensate them. That is, we still fit a simple linear model to 243 the raw traces. The electrode time constant was τe =0.1 ms, compared to a membrane time 244 constant of about 5 ms. 245 We injected fluctuating currents (see Methods) into the electrode (Fig. 3A, top), consisting of a 246 mixture of background filtered noise and large random postsynaptic currents (PSCs). Here the 247 neuron and electrode resistances were comparable (about 500 MΩ), and therefore the 248 uncompensated recording was highly corrupted by the electrode (middle, gray). The solid trace 249 shows the fit of the linear model to the raw trace (with p = 0.5). Once the electrode part of the 250 linear model is subtracted, the compensated trace is hardly distinguishable of the true 251 membrane potential of the biophysical neuron model (bottom). 252 We varied the electrode resistance Re between 50 and 500 MΩ, and tested the compensation 253 technique with three different types of currents, to vary the output firing rate of the neuron 254 (between 1 and 20 Hz). In all cases, the electrode resistance was very well estimated by the 255 method (Fig. 3B). We then tested the influence of the error criterion (Fig. 3C). Using the mean 256 
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squared error (p = 2) clearly gave inferior results, even when the cell spiked at low rate. This is 257 presumably because the neuron was highly nonlinear, which perturbed the estimation of the 258 electrode. Best results were obtained with p≤0.5, with no significant improvement below p=0.5. 259 Noise in real recordings could degrade performance for very low values of p, and therefore we 260 suggest to use p=0.5 in general. 261  262 
Compensation of cortical recordings 263 We then injected fluctuating currents with large transients into cortical neurons in vitro 264 (pyramidal cells of the mouse auditory cortex), using high resistance patch electrodes. Because 265 of these transients, raw traces were noisy and spikes could not be clearly distinguished (Fig. 4A, 266 top). After compensation, traces were smoother and spikes stood out very clearly (bottom). 267 One advantage of this technique is that electrode properties can be tracked over the time course 268 of the recording. In Fig. 4B, we show the evolution of the neuron and electrode resistance, as 269 estimated by the model, during 10 minutes of recording (fluctuating current was injected). The 270 recording was divided in slices of one second, and each slice was independently compensated 271 (by running the model optimization on every slice). First, we observe some variability in the 272 neuron resistance, but little variability in the estimated electrode resistance (at least for the first 273 5 minutes). This is a sign of a good electrode compensation, because electrode properties should 274 be stable on a short time scale, while the properties of the neuron should change during 275 stimulation, as ionic channels open and close. Quantitatively, the standard deviation of the 276 estimated Re in the first 5 minutes is σe = 11.6 MΩ. Given that the mean current is µI = 20 pA, the 277 error in membrane potential estimation should be of order µI.σe = 0.23 mV. 278 Second, in the middle of the recording, we observe that the electrode resistance slowly 279 increases. This is unlikely to be an artifact of our compensation technique, because the neuron 280 resistance remains stable and the estimated electrode resistance is also stable on shorter time 281 scales. It could be for example because the electrode moved. This is an example where this 282 technique is especially useful, because the recordings can still be compensated even though 283 electrode properties change, as illustrated in Fig. 4C. On the left, a compensated trace (solid) is 284 shown superimposed on the raw trace (gray), at the beginning of the recording (1). The same is 285 shown on the right at the end of the recording (2), with updated electrode parameters. The raw 286 trace is now further away from the compensated trace, because the electrode resistance has 287 increased. If the electrode parameters are not updated, that is, we use the electrode properties 288 obtained at the beginning of the recording to compensate the end of the recording, then the 289 compensated trace is significantly different (bottom right): in particular, what looked like a post-290 synaptic potential preceding the spike now looks like a "spikelet", which is presumably a 291 residual electrode response to an injected post-synaptic current. 292 To check that the technique indeed correctly tracks changes in electrode resistance, we 293 simulated an abrupt change in Re in a model recording, in which the neuron receives a 294 fluctuating current (Fig. 5A). In the middle of the recording, Re increases from 100 MΩ to 300 295 MΩ (dashed step). The method correctly tracks this change, while the estimate of the membrane 296 resistance R is unchanged. To check that changes in neuron properties do not perturb the 297 method, we injected a filtered noise current in a neuron of the cochlear nucleus and we 298 
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pharmacologically increased the membrane resistance (Fig. 5B). These neurons strongly express 299 a hyperpolarization-activated current named Ih (Cao et Oertel, 2011). From the middle of the 300 experiment, we apply an Ih blocker (see Methods). As expected, the estimated neuron's 301 resistance increases sharply, while the estimated electrode resistance remains stable. 302  303 
Spike detection 304 The simplest application of the method is to reliably detect spikes in current-clamp recordings. 305 We now describe a spike detection procedure, in which the rate of errors can be evaluated (Fig. 306 6). Although we developed it for the present compensation technique, it could be applied in 307 principle to any compensated recording. The procedure relies on the observation that when the 308 recordings are plotted in phase space (dV/dt vs. V, Fig. 6A), spike peaks appear as crossings of 309 the line dV/dt = 0 at high values of V. In a correctly compensated recording, these crossings are 310 clearly distinct from those corresponding to subthreshold fluctuations (low values of V). Our 311 procedure consists in computing a histogram of crossing values (Fig. 6B) and splitting it into two 312 modes by choosing an appropriate decision threshold (see Methods). Crossings above the 313 decision threshold are considered as spike peaks (Fig. 6C). The quality of spike detection can 314 then be estimated with signal detection theory as follows. We approximate the two modes of the 315 histogram as normal distributions. The probability that a sample from the subthreshold 316 distribution exceeds the decision threshold is the false alarm rate, while the probability that a 317 sample from suprathreshold distribution exceeds the decision threshold is the hit rate. In the 318 specific recording shown in Fig. 6, the distributions were very well separated, so the hit rate was 319 near 100% and the false alarm rate was near 0%. 320 
 321 
Quality and stability of electrode compensation 322 The temporal stability of the estimated electrode resistance may also be used as a quality check 323 of the compensation. To check this point, we simulated the response of a biophysical neuron 324 model with an electrode (same as in Fig. 3) to a filtered noisy current. We then estimated the 325 electrode and neuron resistances in each 1 s slice of a 1 minute recording (Fig. 7A). The results 326 are very similar to Fig. 4B: the neuron resistance is quite variable while the electrode resistance 327 is very stable. The estimation of Re varied by about 10% (standard deviation/mean - two outliers 328 (Re > 400 MΩ) were removed), while the true value was within 5% of the mean (200 MΩ vs. 192 329 MΩ). 330 In a single-electrode recording, it is difficult to do an independent check of the quality of 331 electrode compensation. Nevertheless, we suggest a simple test based on action potential shape. 332 The shape of action potentials can vary (slightly) over time in a single cell, in particular the spike 333 threshold and peak value (Platkiewicz et Brette, 2010a). However, these changes tend be 334 coordinated, for example spikes with a low onset tend to have a higher peak. Fig. 7B (top left) 335 shows an example of this phenomenon in a neuron of the prefrontal cortex in vivo (Léger et al., 336 2005). This may be explained by sodium inactivation (Platkiewicz et Brette, 2011a): at lower 337 membrane potentials, sodium channels are less inactivated, and therefore more sodium current 338 enters the cell, which produces higher spikes. It is useful to represent spikes in a phase space, 339 where the derivative of the membrane potential Vm (dVm/dt) is plotted against Vm (Fig. 7B, top 340 
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right). In this representation, spikes form concentric trajectories that do not cross each other. 341 We found the same phenomenon in compensated traces of our in vitro recordings (Fig. 7B, 342 middle). How would the traces look like in phase space if the electrode resistance were 343 misestimated? It should result in random shifts of the membrane potential (essentially 344 proportional to the current injected at spike time) and therefore in random shifts of the spike 345 trajectories in phase space along the horizontal direction. This horizontal jitter should make 346 some trajectories intersect. This is indeed what happens in Fig. 7B (bottom), where we 347 compensated the recording with an electrode resistance mistuned by 25%. Therefore, in this 348 case, we may be relatively confident that Re was estimated with at least 25% accuracy. 349 We developed a more quantitative test of compensation quality based on spike shape (Fig. 8). It 350 is based on the idea that the voltage at spike peak should not depend on the current injected 351 after spike initiation. In a previous study, Anderson et al. (2000) used a similar principle to 352 estimate the electrode resistance: if the voltage value at spike peak is constant, then the 353 correlation between the measured voltage at spike peak and the injected current is precisely the 354 residual (non-compensated) electrode resistance. The interest of this estimation method is that 355 it only uses information based on spike shape, while other estimation methods (including ours) 356 uses only information in the subthreshold response. Therefore it can be seen as an independent 357 control. One weakness of this method is that the voltage at spike peaks is in fact not constant and 358 depends on membrane potential history, as we previously mentioned. This can introduce 359 spurious correlations between injected current and spike peak voltage, which are not indicative 360 of poor electrode compensation. We refined this method to address this issue (Fig. 8A and 361 Methods). First, we predict the spike peak from the membrane potential preceding the spike, 362 using a linear regression to the preceding voltage. Second, we calculate the Pearson correlation 363 between the current injected during the spike and the error in predicting the peak value. This 364 correlation coefficient, which we call "quality coefficient", should be minimal when the recording 365 is correctly compensated. Fig. 8B shows in this recording how the compensation Lp error varies 366 when the estimated electrode Re and neuron resistance R are varied. The lowest error value is 367 achieved with Re = 103 MΩ. Fig. 8C shows how the quality coefficient varies in the same 368 recording when Re and R are varied. The lowest value is achieved with Re = 95 MΩ. These two 369 panels confirm that these two error criteria are different in nature: the Lp criterion is strongly 370 modulated by the total resistance (electrode+neuron), while the quality coefficient mostly 371 depends on the electrode resistance. For this specific recording, we may conclude that the 372 estimation of Re should be correct within about 10 %. Note that this method based on the quality 373 coefficient is also not perfect, because it implicitly assumes that the neuron's resistance is zero at 374 spike peak, which of course is not exactly true, especially in neurons with small somatic spikes. 375 
Dendrites 376 One important difficulty with all single-electrode compensation methods, including the present 377 one, is that the presence of dendrites may contribute a fast component in the neuron's response 378 to injected currents, potentially at the same timescale as the electrode response. With a single 379 electrode, there is no principled way to distinguish between the two contributions, which means 380 that an electrode compensation method may subtract both the electrode voltage and the 381 dendritic response. In (Brette et al., 2008), it was shown in a multicompartmental model of a 382 pyramidal cell that the dendritic contribution was not large enough to degrade the quality of 383 recordings compensated with AEC. Here we simulated a pyramidal neuron model with two 384 
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compartments representing the soma and dendrites (Wang, 1998), with a filtered noisy current 385 injected at the soma and an electrode model (Re=200 MΩ and τe=0.2 ms). The recording was 386 compensated as previously, that is, the model used in the compensation procedure did not 387 include a dendritic component (Fig. 9A). As is seen on Fig. 9A, the compensated recording is still 388 very accurate (estimated Re was 171 MΩ). We then modified the neuron model used for the 389 compensation procedure to include a dendritic compartment (electrical circuit shown on Fig. 390 9B). This improved the estimation of Re (192 MΩ). However, we should caution that there is no 391 guarantee that adding a dendritic compartment in the compensation model will always improve 392 the accuracy, because it may depend on the neuron's morphology, for example. 393 It could be that in other recordings (e.g. different cell morphologies), the dendritic component is 394 more important, which could degrade the quality of compensation. However, as we noted, this 395 problem is not worse than with any other single-electrode compensation method. In fact, to be 396 more precise, dendritic and electrode responses are indistinguishable for any method based on 397 the linear response of the circuit (neuron+electrode). This includes the present method, bridge, 398 and discontinuous current clamp (DCC). But the independent control based on spike peaks that 399 we presented above (Fig. 8) is in fact based on the nonlinear response of the neuron. Therefore 400 it could also be used to test whether the compensation may be compromised by dendritic 401 components. 402 
 403 
Application: spike threshold in vitro 404 We finish with an application of this technique to the measurement of the spike threshold (more 405 precisely, spike onset) in response to fluctuating currents in neurons of the cochlear nucleus. In 406 
vivo, the spike threshold in many areas shows significant variability. It is negatively correlated 407 with preceding depolarization slope (Azouz et Gray, 2003; Wilent et Contreras, 2005) and with 408 the preceding interspike interval (Henze et Buzsáki, 2001) (see (Platkiewicz et Brette, 2010a) 409 for a more exhaustive overview). These properties have also been seen in cortical neurons in 410 
vitro in response to fluctuating conductances, using the dynamic clamp technique (Polavieja et 411 al., 2005). In Fig. 10 we show similar results in a stellate cell of the cochlear nucleus, using 412 current clamp injection of a fluctuating current (filtered noise with time constant 2 ms). This 413 corresponds to the type of cell modeled in Fig. 3. One difficulty is that these cells tend to have 414 short membrane time constants (about 5 ms in this cell), and therefore separating the electrode 415 from the neuron response is more challenging. 416 Fig. 10A shows the compensated recording. Spike onsets (black dots) were measured according 417 to a criterion on the first derivative of the membrane potential (dV/dt = 1 V/s). In this recording, 418 the spike threshold distribution spanned a range of about 12 mV, with standard deviation σ = 2.1 419 mV, which is comparable to in vivo measurements in the cortex (Azouz et Gray, 2003; Wilent et 420 Contreras, 2005) and in the inferior colliculus, another subcortical auditory structure (Peña et 421 Konishi, 2002). This variability appeared higher in the uncompensated recording (σ = 2.9 mV), 422 but also when bridge balance was used (σ = 2.6 mV), using the resistance value obtained by our 423 method (Re = 45 MΩ).  In addition, in both the uncompensated recording and the bridge 424 compensated trace, there was a small inverse correlation between spike threshold and 425 preceding depolarization slope (Fig. 10B,C; slope of the linear regression: -8 ms and -11.4 ms). 426 This correlation was stronger when our compensation method was used (Fig. 10D; slope -18.2 427 
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ms). Thus, with our compensation method, the inverse correlation was stronger while the 428 variability in spike threshold was smaller, which suggests that this stronger correlation is indeed 429 the result of a more accurate estimation of spike threshold. 430 As a complementary test, we simulated a recording with a neuron model exhibiting a dynamic 431 spike threshold (Fig. 10E). We used a simplified single-compartment model, in which the value 432 of the spike threshold is explicitly known (Platkiewicz et Brette, 2010a, 2011a) (dashed curve in 433 Fig. 10E). In the uncompensated recording, the spike threshold cannot be correctly measured 434 (Fig. 10F), while it is correctly estimated in the compensated recording (Fig. 10G, note the 435 different vertical scale). 436 
 437 
Discussion 438 We have a proposed a new method to correct the electrode bias in single-electrode current-439 clamp recordings. As with active electrode compensation (AEC) (Brette et al., 2008), the 440 principle is to fit a model of the measurements, that includes both the electrode and the neuron, 441 and to subtract the predicted electrode voltage. The main difference is that it does not require 442 any preliminary calibration, and it still works when electrode properties change during the 443 course of the recording (on a slow timescale). In addition, thanks to a special error criterion, the 444 estimation procedure is not very degraded by action potentials and other nonlinearities. We 445 have also proposed a method to reliability detect spikes, and an independent quality control 446 based on analyzing spike peaks. 447 There are limitations, many of which are shared by other compensation methods. First, the 448 electrode must be linear. This is a critical point, discussed in (Brette et al., 2008), and it may not 449 always be satisfied. Unfortunately, no compensation method can solve this issue, because when 450 the electrode is nonlinear, the injected current is also distorted (Purves, 1981). However, with 451 our technique, we can track the temporal changes in electrode properties and possibly detect 452 electrode nonlinearities (which would mean that electrode properties vary with the mean 453 injected current). In fact, it is possible in principle to incorporate nonlinearities in the electrode 454 model, but this would require to have a precise model, which is not available at this time. 455 Second, the technique only corrects the measured potential, but not the injected current, which 456 is still filtered by the electrode. Therefore, it is still useful to use the capacitance neutralization 457 circuit on the amplifier, so as to minimize the electrode time constant (this is a feedback circuit, 458 which corrects the current rather than the potential). This issue is also present in double-459 electrode recordings. Third, although in principle the electrode and neuron timescales do not 460 need to be well separated, in practice it may be difficult to distinguish between neuron and 461 electrode components that are on a similar timescale, for example fast dendritic components 462 and electrode response. This issue is present with all single-electrode compensation techniques, 463 which is another reason to use capacitance neutralization on the amplifier. 464 Another, more specific, issue is the choice of the neuron and electrode models. In the 465 experiments shown in this paper, a simple RC circuit for each element (neuron and electrode) 466 seemed sufficient to correct the recordings. We should note that the capacitance neutralization 467 circuit was used in these recordings (although not fully), and therefore the residual capacitance 468 was compensated (which could be distributed along the wall of the electrode). However, it might 469 
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not be sufficient in other cases. It is not a problem in itself, since it is straightforward to change 470 the model to be optimized (in our software tool, this only means entering different equations for 471 the model). For example, one could consider a more complex electrode model, with two resistors 472 and two capacitors. These more complex models could be used when the quality of the fit is 473 poor, or when there is a large temporal variability in estimated electrode properties. 474 This technique may be extended in several ways. First, although we only applied it to current-475 clamp recordings, it could be used in the dynamic clamp (Prinz et al., 2004) or even voltage 476 clamp mode (implemented e.g. as a dynamic clamp with high gain). However, since in these 477 modes the current depends in real time on the estimated membrane potential, the electrode 478 compensation cannot be done offline and therefore requires preliminary calibration. One 479 possible advantage over other techniques such as AEC is that it is more robust to neuronal 480 nonlinearities (e.g. action potentials). This property may also make it more appropriate for in 481 
vivo recordings. Finally, we suggest that this technique could be used to fit neuron models to 482 intracellular recordings (Jolivet et al., 2008; Gerstner et Naud, 2009; Rossant et al., 2011b). The 483 current strategy is in two stages: first compensate the recordings (e.g. with bridge balance), then 484 fit a neuron model to the compensated trace. Instead, we suggest that a better strategy is to 485 directly fit a model of the full experimental setup, including the neuron and the electrode, to the 486 uncompensated recordings. 487  488 
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Appendix 493 
Model simulation with a linear filter. When the model of the neuron and the electrode is 494 linear, it can be efficiently simulated using a linear filter. More specifically, let us write the model 495 equations as )())(()( ttt

dt

d XBYMY +−= , where Y is a d-dimensional vector, M a d*d matrix, B 496 is a d-dimensional vector, and )0,...,0),(()( txt t=X , where x(t) is the fluctuating input current. 497 In general, the linear model can be written under this form as soon as the matrix M is invertible. 498 Assuming that the input current is sampled at frequency f=1/dt, we can numerically solve this 499 equation by simulating the following discrete-time linear system: nnn XAYY +=+1 , where 500 
)exp( dt⋅= MA  and we applied the following change of variables: BYY −← . This system can 501 be solved using a linear filter: kn

d

k

d

k kknkn yaxby −= =− −=
0 1

, where ][iy nn Y=  and 502 
dtdtnxxn )( ⋅= , and i is the index of the variable to be simulated (typically, neuron and 503 electrode potential). The values ka  can be obtained by computing the characteristic polynomial 504 of the matrix A,  =

−=−⋅= d

k

kd
kA XaIdXXP

0
)det()( A . The values kb  are obtained with 505 
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]0,[iTb kk = , where  = −= k
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A . 506 We give an outline of the proof here. We start from the Cayley-Hamilton theorem, which states 507 that 0)( =AAP . We multiply this equation by dn−Y : 0
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and we substitute it in the equation above, which gives: 511 
  = = +−

−
−= +−− −= d

k

k

p pdn
pk

kd

d

k kdnkd aa
0 10
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We then obtain the desired result by looking at coordinate i. 513 Using this technique, electrode compensation is very fast (close to real time with sampling rate 514 10 kHz), even though we implemented it in Python, an interpreted language. 515  516 
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Figure legends 582 
Figure 1. Bridge and dynamic electrode compensation methods illustrated on a patch clamp 583 recording in a pyramidal neuron from mouse auditory cortex. Top: injected current, starting 584 with a current step for calibrating the bridge compensation method (left), and followed by a 585 fluctuating current with fast transients (current B, right). Middle: bridge compensated 586 membrane potential. Bottom: compensated trace using our technique. 587 
Figure 2. The calibration-free electrode compensation technique. A. Overview of the technique. 588 An input current is injected into a real neuron during a current clamp in vitro recording (top). 589 The raw trace recorded by the electrode (gray) includes the responses of both the neuron and 590 the electrode. Simultaneously, the current is injected into a linear (non-spiking) model of the 591 neuron and electrode (bottom). The model parameters are adjusted by an optimization 592 procedure so as to minimize the Lp error (see text) between the model trace (black) and the raw 593 trace (gray). The model is then used to predict the electrode response and subtract it from the 594 raw trace, yielding the compensated trace. B. Compensation example. Left: raw trace (gray, 595 filtered noise current) and full model trace (black). Right: compensated trace. C. Compensation 596 of large EPSPs and action potentials using the mean squared error (p = 2). Left: raw (gray) and 597 model (black) traces on a current with fast and large EPSCs (current B). The inset shows a zoom 598 on an EPSP followed by an action potential: the model overestimates the EPSP because of the 599 spike. Right: the compensated trace, showing distorted EPSPs and action potentials. The 600 histogram of the differences between raw trace and optimized model trace (right) peaks below 0 601 mV because of the long positive tail due to action potentials. D. Same as C but with p = 0.5. This 602 error criterion gives less weight to outliers such as action potentials, leading to a better 603 estimation of the membrane potential. 604 
Figure 3. Test of the electrode compensation method in a biophysical model of a cochlear 605 nucleus neuron (Rothman et Manis, 2003) (resistance ~500 MΩ, time constant ~5 ms), with a 606 non-ideal electrode (resistance Re = 50-500 MΩ, time constant τe = 0.1 ms). A. Top: a 1s 607 fluctuating current with large and fast transients (set 3) is injected into the biophysical model 608 (Re = 500 MΩ). Middle: raw (gray) and fitted model (black) traces using our compensation 609 technique (p=0.5). The fitting procedure finds Re = 480 MΩ and τe =0.1 ms. Bottom: 610 compensated trace (black) and biophysical neuron model trace (dashed gray), showing a perfect 611 fit (inset). B. Scatter plot of the model and fitted electrode resistance values, using three 612 different 1s currents (o: set 1, +: set 2, x: set 3, see Methods) and four different electrode 613 resistance values (Re = 50 MΩ, 100 MΩ, 200 MΩ, 500 MΩ). C. Electrode and membrane 614 resistance values found by the compensation technique when the actual resistance is Re = 100 615 MΩ (dashed line) as a function of p (current from set 1). 616 
Figure 4. Test of the compensation method on real data. A. A fluctuating current (current B) is 617 injected into a neuron of the mouse auditory cortex during a patch clamp experiment. Top: raw 618 recorded trace. Bottom: compensated trace. B. A 590s long fluctuating current (current A, mean 619 10 pA, standard deviation 30 pA) is injected into a neuron. The trace is divided in 1 s windows, 620 and the fitting procedure is applied independently on each window. Top: estimated neuron 621 resistance as a function of time. Bottom: estimated electrode resistance as a function of time. 622 Recordings at times 1 and 2 are shown in C. C. Raw (gray) and compensated (black) traces at 623 times 1 (left, Re = 33 MΩ) and 2 (top right, Re = 81 MΩ). Bottom right: same as above but using 624 
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the electrode resistance obtained at time 1 (Re = 33 MΩ). 625 
Figure 5. Robustness of the compensation method to changes in neuron or electrode resistance. 626 
A. Estimated neuron resistance (dots) and electrode resistance (crosses) in a simulated 627 recording with a varying electrode resistance. The Rothman & Manis neuron model (type 1c) 628 and an electrode model are simulated with a 20 s filtered noise current. After 10 s, the electrode 629 resistance is increased abruptly from 100 MΩ to 300 MΩ during the last 10 seconds (dashed 630 step: actual value of Re). B. Estimated neuron and electrode resistance in an in vitro recording 631 with an Ih blocker. Filtered noise current is injected into a bushy cell during 8 min. The Ih 632 blocker ZD788 (10µM) is applied to the bath during the second half of the stimulation, which 633 increases neuron resistance. Dotted lines are linear regressions of the estimated neuron 634 resistance in the two parts of the experiment. 635 
Figure 6. A method for spike detection in an intracellular recording. A. A 30 s compensated 636 recorded trace of a pyramidal cell in vitro, seen in phase space ( dV/dt vs. V), for a filtered noise 637 injected at the soma. Large cycles correspond to spikes. B. Distribution of voltage values 638 measured when the trajectory in phase space (A) crosses the horizontal dashed line dV/dt = 0 639 (local maxima and minima). Two modes appears, corresponding to fluctuations (left) and to 640 spike peaks (right). An optimal separatrix between the two modes is calculated (dashed vertical 641 line). The two modes in the histogram are fitted to Gaussian distributions, which are used to 642 quantify spike detection quality. C. An example of spikes detected with this method on a 643 compensated trace (solid line). The dashed line indicates the decision threshold, and detected 644 spike peaks are shown with filled circles. 645 
Figure 7. Quality and stability of electrode compensation. A. Estimated neuron (o) and electrode 646 (x) resistance (line: actual electrode resistance of the model) as a function of time, on a 647 simulated recording with an injected noisy current (filtered noise) (same model as in Fig. 3, Re = 648 200 MΩ). The mean firing rate was ~8 Hz. B. Action potential shapes. Top: spikes recorded in 649 
vivo in a neuron of the prefrontal cortex (Léger et al., 2005). On the right, the same spikes are 650 shown in the phase plane (V, dV/dt) (see Methods). Middle: compensated spikes of a cortical 651 neuron in response to a fluctuating current. Bottom: same as above but when the estimated 652 electrode resistance is increased by 25%. 653 
Figure 8. Control of electrode compensation using spike peaks. A. Illustration of the method. For 654 each spike, a linear regression is performed on the compensated trace (top, black; 655 uncompensated trace is in grey) in a temporal window from 10 ms to 2 ms before spike peak. 656 We then compute the best linear prediction of the spike peak, given the two regression 657 parameters (intercept and slope). The quality coefficient is defined as the Pearson correlation 658 between the prediction error and the mean input current around spike peak (2 ms before to 1 659 ms after; grey horizontal line on the bottom trace). B. Lp error between the model trace and the 660 measured trace, as a function of the model neuron and electrode resistances, with all other 661 parameters fixed at their optimal values. The parameter values giving minimum error are 662 represented by the cross. C. Quality coefficient as a function of the model neuron and electrode 663 resistances, with the best parameters represented by the cross. 664 
Figure 9. Test of the method with a two-compartmental neuron model. A. A pyramidal neuron 665 model with two compartments (soma and dendrite) and a linear electrode are simulated, with a 666 filtered white noise injected current. The recorded trace (grey) is then compensated with our 667 
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method (p=0.5). The compensated trace (solid black) matches the neuron voltage (dotted), 668 except for spikes that are filtered by the electrode. B. The same trace is compensated, but the 669 compensation model now includes a dendritic current. 670 
Figure 10. Spike threshold measurements in a stellate cell of the cochlear nucleus. A. 671 Compensated voltage trace of a stellate cell in response to an injected fluctuating current. Spike 672 thresholds are measured as the membrane potential when the first derivative exceeds 1 V/s 673 (dots). B. Spike threshold as a function of depolarization rate in the 10 ms preceding each spike, 674 when the trace is not compensated (dashed line: linear regression). C. Same relationship in the 675 bridge compensated trace. D. Same relationship in the trace compensated with our method. E. 676 Simulated recording with a neuron model with adaptive spike threshold and an electrode model 677 ( Ω= MRe 60  and 6.0=eτ ms). The uncompensated recording is the solid grey curve, the 678 compensated recording the solid black curve. The real membrane potential is shown in dotted 679 grey but at this scale, it is only distinguishable after spikes. The dynamic spike threshold is the 680 dashed black curve. F. Spike threshold measured at spike times in the uncompensated recording 681 vs. actual spike threshold. G. Spike threshold measured at spike times in the compensated 682 recording vs. actual spike threshold (note the different vertical scale). 683 
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