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Chapter 2

The membrane potential

2.1 Elements of neuronal cell biology

In this book, we will focus mainly on neurons. However, the matter covered in this chapter also
applies to a large extent to non-neuronal cells, such as muscle fibers and excitable unicellular
organisms.

2.1.1 Morphology

All living organisms are made of cells bound by membranes. Cells come in various sizes and
shapes1. The bacterium E. Coli is roughly cylindrical with a diameter of 1 µm and a length of
2 µm. In humans, small lymphocytes are approximately 7 µm in diameter while large liver cells
reach 50 - 100 µm. Most animal cells are 10 – 30 µm in diameter. As we have seen in section
??, many non-neural cells are excitable and can produce APs (for example muscle fibers), but
in this book we will focus on neurons. Neurons are excitable cells that have extensions called
neurites (axons and dendrites), which can extend over very long distances. For example, axons
of the human sciatic nerve extend from the base of the spinal cord to the big toe of each foot,
which makes them around 1 m long.

Figure 2.1 shows a particular type of neuron from the human cerebellum called a Purkinje
cell, drawn at the end of the 19th century by Ramon-y Cajal (1899) using Golgi staining. Other
drawings from the same book are shown in figures 2.2, 2.3 and 2.5 (note that neurons in Fig.
2.3 are not to scale). A neuron is composed of a cell body or soma, which includes the nucleus
where DNA is located2, and extensions called neurites. There are two types of neurites: axons
and dendrites. The Purkinje cell has a soma of about 25–40 µm (in rats (Herndon, 1963)) and,
as most vertebrate neurons, it has a single axon stemming from the soma3, which then branches
and reaches other neurons. APs are produced at the beginning of the axon, in a structure called
the axon initial segment (AIS), and then propagates along the axon towards other neurons. The
diameter of this axon is about 1.5 µm. Other axons in the nervous system vary in diameter in
the 0.1− 10 µm range4 (Perge et al., 2012). The lower limit of 0.1 µm might be determined by
biophysical constraints, in particular the stochasticity of ion channel opening (Faisal et al., 2005)

1Morphological reconstructions of neurons can be found on http://neuromorpho.org/.
2Procaryotes (bacteria) do not have a nucleus; eucaryotes, which include all multicellular organisms, do.
3Axons also frequently originate from a dendrite (Husser et al., 1995; Gentet and Williams, 2007; Thome et al.,

2014).
4with special cases such as the squid giant axon, with a diameter of about 1 mm.
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Figure 2.1: Purkinje cell of the human cerebellum.
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Figure 2.2: Pyramidal cortical neurons. A, Neuron from a rabbit. B, Adult neurons from
different species (A to D: frog, sand lizard, rat, man) and different development stages.

(see chapter ??).The Purkinje cell also has a highly branched structure called the dendritic tree.
The axon of a neuron contacts the membrane of other neurons at synapses, which are generally
located on dendrites and on the soma5. A single Purkinje cell has on the order of 100, 000
synapses. Current is generated at the synapse on the postsynaptic side (target neuron) when
an AP arrives on the presynaptic side (source neuron). Thus, the general direction of electrical
flow goes from the dendrites to the soma, then through axon to the axonal terminals (where
synapses are made onto target neurons). As already mentioned in chapter ??, the AP also
often backpropagates from the axonal site of initiation into the soma and dendrites (Stuart and
Sakmann, 1994). The dendritic tree of the Purkinje cell extends over about 200 µm, but this is
highly variable between cell types. Dendrite diameter is a few µm at the base (near the soma),
and decreases below the µm at the tips.

This general structure is found in most vertebrate neurons, with various dimensions and
shapes. Figure 2.3A shows the principal excitatory neuron of the cortex, called a pyramidal cell.
The cell body is about 20 µm in diameter. It extends a long dendritic tree towards the surface
of the cortex, covered by spines, which are small protusions (< 1 µm) typically receiving a single
synapse. There are about 10, 000 synapses on a pyramidal cell. The axon is the spineless neurite
originating from the soma6. Figure 2.3B shows pyramidal cells from different species (A-D) and
different stages of development (a-e). As can be seen, the general structure is similar between
species, with differences in the branching structure of both dendrites and axons.

Figure 2.3 shows these two cell types in the context of the motor circuit in which they are

5There are also synapses on the axon, in particular on the AIS (Kosaka, 1980).
6and sometimes from a basal dendrite (Thome et al., 2014).
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Figure 2.3: Neurons of the motor pathway (top to bottom: brain, cerebellum, spine and muscles).
Pyramidal cortical cells are shown on top (A) and Purkinje cells on the right (C).
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Figure 2.4: Neurons of the retina: a; cones; b, rods; c and d: bipolar cells; e: ganglion cells; f:
amacrine cells.

embedded. Arrows show the direction of AP propagation. Pyramidal cells project long axons
to the spine, where they contact the dendrites of motoneurons, which in turn project axons to
muscles. The axons of pyramidal cells also branch in the brain towards the cerebellum, where
they indirectly contact Purkinje cells. Purkinje cells also project axons towards motoneurons of
the spine. Dendrites are always somewhat local (extending over less than 1 mm), while axons
can extend over distances of that are comparable with the organism’s size, up to about 1 meter
in human motoneurons.

Many neurons also have a somewhat different anatomical structure, as exemplified by neurons
of the retina (Figure 2.4). For example, amacrine cells (f) have no axon, only a dendritic tree
extending over 70 − 350 µm. Ganglion cells (e) are the only retinal cells whose axon projects
outside the retina. Bipolar cells (c) have a single long dendrite originating from the soma and
then branching near the photoreceptors (a and b), and an axon on the opposite side. Neurons
that constitute the auditory nerve, the spiral ganglion cells, are also bipolar, but both neurites
are excitable; APs initiate near the synapse with the inner hair cells that sit on the cochlea
(Hossain et al., 2005), then propagate to the soma, then continue propagating towards axonal
terminals in the brainstem.

In invertebrates, the cell body is not on the path of electrical propagation between synapses
and axonal terminals (Figure 2.5). Instead, neurons are generally unipolar, with a single neurite
emerging from the soma, which serves both as axon and dendrite carrying synapses (there are
also dendritic branches).

2.1.2 Structure of a neuron

The membrane

The membrane of an animal cell is on the order of 5 nm thick and is made of two layers of
lipid molecules. Those molecules have a hydrophilic end and a hydrophobic end, and so they
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Figure 2.5: Earthworm motoneuron contacted by a sensory neuron (arrows show the direction
of APs).

Figure 2.6: The fluid mosaic model of membranes, showing proteins embedded into a lipid bilayer
(Singer and Nicolson, 1972).
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spontaneously arrange themselves by pair, with their hydrophobic ends against each other. About
half of the mass of cell membranes is made of proteins, which are embedded into the lipid bilayer
(e.g. ion channels) or attached to the membrane. Current understanding of the structure of cell
membranes is described by the fluid mosaic model (Figure 2.6) (Singer and Nicolson, 1972): the
membrane is seen as a two-dimensional solution of proteins, where lipids constitute the solvent.
Thus, both lipids and proteins can move by diffusion (random walk) in the membrane.

However, there are restrictions on membrane diffusion, first because the membrane is crowded,
and second because some constituents of the membrane are attached to the cytoskeleton, the
scaffolding of the cell (Jacobson et al., 1995). For example, in the axon initial segment, super-
resolution microscopy has revealed that sodium channels are anchored to a scaffold protein called
ankyrin-G, which is attached to a periodic structure made of actin rings separated by pairs of β-IV
spectrin molecules (Xu et al., 2013; Leterrier et al., 2015) (Figure 2.7). The dense cytoskeleton
of the AIS also forms a barrier to membrane diffusion (Nakada et al., 2003), which prevents
proteins from moving freely from the soma to the axon membrane.

The membrane separates the inside of the cell, called the cytoplasm, from the extracellular
medium. Water and some uncharged molecules (e.g. urea, gases) can move across the membrane,
but a critical property of cell membranes is that proteins cannot freely move across them: this
ensures that the biological material of the cell does not diffuse into the extracellular medium.
Other molecules and in particular small ions such as Na+ and K+ are also blocked by the bilipidic
layer, but K+ ions can cross the membrane through channels, which are transmembrane proteins
(more detail in section 2.2). This makes the membrane permeable to K+, while the permeability
to other ions is low at rest.

Inside neurons

The content of a cell is called the cytoplasm. It encloses a number of organelles bathing in a liquid
substance called the cytosol (Figure 2.8). In eukaryotes (including all multicellular organisms),
one of these organelles is the nucleus, located in the soma, which includes the genetic material
and is the site of transcription, the first step in gene expression where the DNA of a gene is
copied into messenger RNA (mRNA). The fact that transcription is localized to the nucleus is
significant for neurons, because in order to produce new membrane channels in distal regions
of the axon, mRNA must be transported over very long distances. As we already noted in
section ??, the speed of axonal transport does not exceed a couple of µm/s or about 200 mm per
day. Therefore, regulation of genetic transcription has a slow effect on the electrical properties
of axons. This will become important when we discuss the development and maintenance of
excitability in chapter ??.

Proteins such as ion channels are synthesized from mRNA in ribosomes, which are organelles
present in all the cytoplasm including the axon. Mitochondria produce the energy currency of
the cell, ATP, through respiration. There are a number of other types of organelles, which are
less directly relevant for the subject of this book.

The cytoplasm also includes the cytoskeleton of the cell, which is the scaffolding that gives
the cell its shape and mechanical properties. Without the cytoskeleton, there would be no
neurite. The cytoskeleton includes microtubules (filaments in Figure 2.8), which form a sort of
railway network used for the transport of biological material, in addition to providing mechanical
support.

The cytosol is the liquid content of the cell, and represents about 70% of the cell’s volume.
Bernstein’s membrane theory (section ??) sees the cytosol as a watery solution of small ions
(mainly K+). Although the cytosol is indeed mostly water, it is crowded with proteins (about
20% in volume), including the cytoskeleton, which has some effect on the properties of the dis-
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Figure 2.7: Axon cytoskeleton. A, Periodic structure of the axon cytoskeleton, with actin rings
(green) connected by β-IV spectrin (purple) (Xu et al., 2013). B, Molecular structure of the
axon initial segment, with sodium (Nav) channels embedded into the membrane and anchored
to ankyrin-G (Leterrier et al., 2015).



2.1. ELEMENTS OF NEURONAL CELL BIOLOGY 9

Figure 2.8: Soma of a Purkinje cell, showing the nucleus and various organelles (Herndon, 1963).
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Intracellular Extracellular ES

concentration (mM) concentration (mM) (mV)
Squid axon K+ 410 10 -93

Na+ 49 460 56
Cl− 40 540 -65

Cat motoneuron K+ 150 5.5 -83
Na+ 15 150 58
Cl− 9 125 -66

Table 2.1: Concentrations of the main ions of the cytosol and extracellular medium in the squid
giant axon (Hodgkin, 1951) and the cat spinal motoneuron (Eccles, 1957), and corresponding
Nernst potentials ES at T = 20◦C (see section 2.2.1).

solved molecules7. For example, ions diffuse more slowly in the cytosol than in water (Verkman,
2002). This situation is called macromolecular crowding. We will not explore these effects further
and in the following we will mostly consider the cytosol as a solution, but it is important to keep
in mind that it is not an ideal solution.

The free water of the cytosol contains many ions, which are molecules that carry an electrical
charge. For example, when salt is dissolved in water, the NaCl molecule (sodium chloride)
splits into two ions, Na+ and Cl−. Positively charged ions are called cations, negatively charged
ions are called anions. Cells are approximately electrically neutral at all times (see section
2.2), which means that the total charge carried by anions matches the total charge carried by
cations. The ionic composition of the cytosol differs between cells and is generally not known
with great precision. Table 2.1 gives the approximate concentrations of K+, Na+ and Cl− in
two cells: the squid giant axon (Hodgkin, 1951) and the cat spinal motoneuron (Eccles, 1957).
Other mammalian cells have similar ionic composition to the spinal motoneuron. As proposed by
Bernstein, the main intracellular cation in all cells is K+ with a concentration of about 100−150
mM8 in mammalian cells.

We note that the ionic composition of the cytosol given in table 2.1 is not electrically neutral.
In reality, the cytosol is electrically neutral: the positive charges (mainly K+) are balanced by
an equal number of negative charges, in the form of large ions (phosphate HPO2−

4 , bicarbonate
HCO−

3 , sulfate SO2−
4 ), charged proteins and amino acids. Part of these charges are essentially

immobilized, and therefore do not participate in electrical currents.

Outside neurons

Extracellular space also contains ions dissolved in water (table 2.1), mainly Na+ and Cl−. It is
sometimes speculated that the ionic composition of extracellular space in vertebrates reflects the
composition of ancient oceans. Thus there are large gradients of ionic concentration across the
membrane: high concentration of Na+ outside the cell vs. high concentration of K+ inside the
cell. The extracellular space also contains a collection of molecules such as collagen, which provide
structural support to the cells (among other functions), collectively called the extracellular matrix
(ECM).

In addition to neurons, the nervous system also includes glial cells, collectively called glia,
which are more numerous than neurons. Glial cells are not excitable but have many functions,

7Hodgkin described the cytosol of the squid giant axon as a gel (Hodgkin, 1964), but the modern conception
is more that of a highly crowded solution.

8Millimolar (mM) is the commonly used unit for molar concentration in biology: 1 molar is 1 mol/L; 1 mM is
1 mol/m3. One mole (mol) is about 6.0221404 × 1023 molecules (the Avogadro number).
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Figure 2.9: A simple chemical model of a cell (A− represents organic anions).

including: providing nutrients and oxygen to neurons, regulating ion homeostasis in extracellular
space, participating in synaptic plasticity, insulating axons. The latter is most directly relevant
to the subject of this book. A particular type of glial cells called oligodendrocytes (Schwann cells
in the peripheral nervous system) coat the axons of some neurons with myelin, an insulating
layer which belongs to the membrane of oligodendrocytes. We will cover this subject in more
detail when we discuss the propagation of APs in chapter ??.

2.2 Membrane polarization

In a simplified view, the cell can thus be seen as a membrane separating two electrolytes, the
internal medium or cytosol containing mostly K+ and the external medium containing mostly
Na+ and Cl− (Figure 2.9). At rest, the membrane is permeable mostly to K+ ions, and to a
lesser extent to Cl− and Na+. These ions can pass through ionic channels. In this chapter, we
only consider membrane properties that do not involve voltage-dependent movements of ionic
channels, which we will study in chapter ??. These are called passive properties of the mem-
brane because membrane permeabilities are considered constant. We generally use the terms
active properties to refer to voltage-dependent permeability changes, such as those underlying
the action potential. This nomenclature can be slightly misleading because the channel move-
ments that underlie “active” properties do not require the cell to provide energy (the energy is
provided by the electrical field). In contrast, we will see in section 2.2.4 that the maintenance
of concentration gradients across the membrane, and therefore membrane polarization, requires
“active” pumps, which consume energy in the form of ATP. Let us simply note that when re-
ferring to the membrane, the terms passive vs. active mean constant vs. voltage-dependent
permeabilities.

As outlined in section ??, the permeability of the membrane to K+ combined to the gradient
of K+ concentration across the membrane results in the establishment of a membrane potential,
i.e., of an electrical field across the membrane. We will now explain the biophysics of this
phenomenon in detail.
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C(x)

C(x+dx)

L

[K+]i = C(0) [K+]o = C(L)

Figure 2.10: Ionic diffusion through a membrane channel. The shading corresponds to the
concentration of K+ (higher on the intracellular side).

2.2.1 A membrane permeable to K+

In general, it is not trivial to calculate the membrane potential that develops through a semi-
permeable membrane, because it depends on the detailed properties of the membrane, in partic-
ular of the ionic channels. However, there is one simple case when this calculation is relatively
easy: the case of a membrane that is permeable to a single ion species. In this case, the mem-
brane potential depends only on the ion concentrations on both sides of the membrane, and not
so much on the specificities of the channels. The value of this membrane potential is called the
Nernst potential or reversal potential for that ion species. The reason why it is called reversal
potential will become clearer when we explain the phenomenon.

The Nernst potential can be derived in several ways from physical considerations. These
derivations can be found in many textbooks and are not particularly important in themselves to
understand action potentials. However, we will study one of these derivations in detail because
it will be the opportunity to illustrate the two mechanisms at play, diffusion and electrical forces.
Here we will focus on the case when the membrane is permeable to K+, but the analysis also
applies to a membrane permeable to another single ionic species.

Diffusion

Let us start with a membrane that separates two ionic solutions, representing the cytosol and
the extracellular space. We assume that the membrane is only permeable to K+ and that the
two solutions contain different concentrations of K+, which we denote [K+]i (inside) and [K+]o
(outside). These ions move randomly by thermal agitation or diffusion. Macroscopically, this
random motion has the consequence that molecules flow from regions of high concentration
to regions of low concentration. To see this, imagine there is a cylindrical channel across the
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Diffusion coefficient (10−5 cm2/s)
Na+ 1.33
K+ 1.96
Cl− 2.03
Ca2+ 0.79

Table 2.2: Diffusion coefficients measured in water at 25◦C (Hille, 2001).

membrane, of length L, through which K+ ions can pass (Figure 2.10). The concentration of
ions along the tube is denoted C(x), where C(0) = [K+]i and C(L) = [K+]o

9. We assume
that ions move randomly and independently through the tube by thermal agitation. How many
ions move through position x in the positive direction in a given time interval dt? This number
is actually the difference between the ions that move through x in the positive direction, and
the ions that move through x in the negative direction. Therefore, it must be proportional to
the difference in the number of ions just before x and just after x, over a small length dx, and
therefore it is proportional to C(x) − C(x + dx). It is also clearly proportional to the section
area of the channel. Thus, the flux of ions in the positive direction at position x, per unit time
and section area is:

JD(x) = −D∂C
∂x

(Fick’s first law)

where the proportionality coefficient D is called the diffusion coefficient. This formula is called
Fick’s first law, and it generalizes to two and three dimensions by replacing the spatial deriva-
tive by a gradient. The diffusion coefficient is in units of m2.s−1, since the flux J is units of
mol.s−1.m−2 and concentration C is in units of mol.m−3.

What does this coefficient mean physically at a molecular level? It quantifies how far an
ion move on average in a given amount of time. Ions move by Brownian motion or random
walk, which means that the total movement an ion performs in a time interval t is a sum of small
independent random movements. This implies that the variance

〈
x2

〉
of its position grows linearly

with t. The proportionality coefficient is 2D, that is,
〈
x2

〉
= 2Dt. Therefore, D =

〈
x2

〉
/(2t).

This diffusion coefficient depends on the ionic species (in particular, heavier molecules have a
lower diffusion coefficient), it increases linearly with temperature, and it also depends on the
solvent. A few diffusion coefficients measured in water at 25◦C are listed in table 2.2. Remember
that these are likely to be lower, in the crowded cytosol. For example, in frog muscle fibers,
diffusion coefficients of Na+ and K+ are about twice smaller (Kushmerick and Podolsky, 1969).

Diffusion tends to equalize the ionic concentrations on the two sides of the membrane. How-
ever, since ions carry electric charges, their displacement produces an electrical field, which then
exerts a force on the ions.

The electrical field

Each charge produces an electrical field, which exerts a force on all other charges. Charges
of the same sign repel each other, while charges of different signs attract each other. In an
electrically neutral environment, the forces produced by positive and negative charges cancel
each other. However, when K+ ions leave the membrane by diffusion, they create an excess of
positive charges in the immediate vicinity of the membrane, which then produces an electrical
field E (we represent vectors with bold face).

9To be more realistic, one would assume that C(0) < [K+]i because the ions need to enter the small channel,
which reduces their concentration. A simple model considers that C(0) = β[K+]i, where β is called the partition
coefficient (Hille, 2001). However, this subtlety does not change the result in our case.



14 CHAPTER 2. THE MEMBRANE POTENTIAL

Remarkably, in the case of a membrane permeable to a single ion species, we do not need to
know how exactly the electrical field depends on the distribution of charges. We only need to
know the effect of the electrical field on the movement of charges. In an electrolyte, the average
velocity of a charge is proportional to the field:

v = ±µE

where µ is called the mobility of the ion, and is expressed in m2.V−1.s−1. The velocity is in
the direction of the field for positive charges, and in the opposite direction for negative charges.
This velocity is only an average, because ions actually move in all directions because of thermal
agitation. This is why it is often called drift velocity, it is the bias in velocity induced by the
field, and it is in general orders of magnitude smaller than the actual instantaneous velocity of
a given ion. We can then add the effect of the electrical field (the bias) to the effect of diffusion
calculated above. In our one-dimensional channel with K+ ions, the net flux of ions due to the
electrical field is proportional to the drift velocity and to the ion concentration:

JE(x) = µE(x).C(x)

If we were dealing with an anion (e.g. Cl−), we would insert a minus sign. The electrical
field has the property that it can be expressed as the gradient of a scalar quantity, and we call
that quantity the electric potential (or more precisely, its opposite):

E = −grad V = −(
∂V

∂x
,
∂V

∂y
,
∂V

∂z
)

In our context, the potential only varies in the x dimension, and the ion flux due to the electrical
field is then:

JE(x) = −µC ∂V
∂x

The equilibrium potential

Therefore, the total ion flux, combining the effects of diffusion and electrical field, is:

J = JD + JE = −D∂C
∂x
− µC ∂V

∂x

In this formula, there are two parameters that are specific of the ion species: the diffusion
parameter D and the mobility parameter µ. Because they depend on the same properties, there
is actually a quantitative relation between them, which has been derived by Einstein:

D =
RT

|z|F
µ (Einstein relation)

where z is the signed number of charges carried by the ion (in the present case z = 1), R =
8.314 J.K−1.mol−1 is the universal gas constant, T is absolute temperature (in kelvin), and
F = 96485.34 C.mol−1 is Faraday’s constant.

We can now calculate the equilibrium potential, which is such that there is no net ion flux.
We can see that mobility µ disappears when we set J = 0, so that we get:

−RT
F

∂C

∂x
− C ∂V

∂x
= 0
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We can rearrange this equation in the following way:

∂V

∂x
= −RT

F

∂(logC)

∂x

We then integrate between the two sides of the channel:

V (L)− V (0) = −RT
F

log
C(L)

C(0)

Position x = 0 corresponds to the cytosol, and the membrane potential is defined as Vm =
V (0)− V (L). Thus we obtain:

Vm =
RT

F
log

[K+]o
[K+]i

This is called the Nernst potential or reversal potential for K+, and is usually denoted EK .
For the concentrations given on table 2.1 for the cat motoneuron, we obtain EK = −87 mV at
37◦C (values are given in the table for temperature T = 20◦C). Our analysis can be trivially
generalized to any ion species S with z charges (z can be positive or negative), and we obtain
the Nernst equation for the reversal potential:

ES =
RT

zF
log

[S]o
[S]i

(Nernst equation)

To give an order of magnitude, RT/F ≈ 26.5 mV at 37◦C, and 25 mV at 20◦C. Here as
well as everywhere else in this book, the logarithm is the natural logarithm (base e ≈ 2.72),
sometimes denoted ln. In base 10, Nernst equation would read

ES =
RT log 10

zF
log10

[S]o
[S]i

≈ 60 mV. log10

[S]o
[S]i

at T = 37◦C

For example, for the cat motoneuron (concentrations on table 2.1), we immediately see that
ENa ≈ 60 mV at 37◦C. This means that, if the cat motoneuron’s membrane were only permeable
to Na+, then its membrane potential would be 60 mV.

How many ions are displaced?

The Nernst equation gives the equilibrium potential in terms of the final ionic concentrations at
equilibrium. In principle, these final concentrations are different from the initial concentrations.
Suppose we start with two electroneutral solutions, so that the membrane potential is Vm = 0 mV.
Then K+ ions flow from the cytosol to the extracellular space until equilibrium is established. At
equilibrium, the two solutions are then not electroneutral anymore: there is an excess of positive
charges, in the form of K+ ions, in the extracellular space, and a lack of K+ ions or equivalently
an excess of negative charges, in the cytosol. How large is this displacement of ions?

Electrically, the ionic solutions are two conductors separated by a thin isolating membrane.
Electrostatic theory tells us that excess charges concentrate at the boundary of a conductor,
while the interior is electroneutral. This means that the excess of positive and negative charges
will be seen near the outer and inner side of the membrane, respectively. Intuitively, it is clear
that the electric field produced by these charges, and therefore the membrane potential, should
be proportional to the number of charges. This is the electrical behavior of a capacitor, which is
summarized in the equation Q = C.V , where Q is the charge on one side of the capacitor, V is
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the electric potential on that side, relative to the other side, and the proportionality constant C
is called the capacitance, in units of farad (F). Expressed per unit area, we obtain:

σ = cmVm

where σ is the surfacic density of charge on the inner side of the membrane, and cm is the mem-
brane capacitance per unit area, called specific capacitance. The capacitance is inversely pro-
portional to the width of the membrane, and for biological membranes is about cm = 1 µF/cm2

(possibly 0.9 µF/cm2 in neurons (Gentet et al., 2000)).
We can now calculate the change in ion concentration necessary to establish the Nernst equi-

librium. Let us consider for example a piece of axon of diameter d and length l. Its surface area
is πd.l and therefore there is an excess of charge on its inner surface equal to σπd.l = cmVmπdl,
which is negative. The charge of one mole of unit charges is the Faraday constant F . Therefore,
the number of moles of K+ that are missing in the cell at equilibrium is cm|Vm|πdl/F . The
volume of this piece of axon is πd2.l/4. Therefore, the change in intracellular K+ concentration
necessary to establish the equilibrium is:

∆[K+]i =
4cmVm
dF

For example, with Vm = −87 mV and d = 1 µm, we obtain ∆[K+]i = −0.04 mM. Remember
that [K+]i is of order 150 mM in vertebrate neurons (table 2.1). Thus even in very thin axons,
the displacement of ions required to establish the membrane polarization is very small and is not
expected to impact intracellular ionic concentrations.

2.2.2 A membrane permeable to K+ and Cl−

At rest, the membrane is in fact also permeable to other ionic species than K+, mostly Cl− and
to a lesser extent Na+. In the squid giant axon, the relative membrane permeabilities to K+, Cl−

and Na+ are 1:0.45:0.04 (Hodgkin, 1951). Therefore, it is not unreasonable to start by assuming
that the membrane is only permeable to K+ and Cl−. The Nernst equation applies when the
net ion flux is null: Vm = EK when the flux of K+ is null, and Vm = ECl when the flux of Cl−

is null. Therefore, we see that an equilibrium can only exist if EK = ECl. According to Nernst
equation, this means that:

[K+]o
[K+]i

=
[Cl−]i
[Cl−]o

or equivalently
[K+]o[Cl−]o = [K+]i[Cl

−]i (Gibbs-Donnan equilibrium)

This situation is called a Gibbs-Donnan equilibrium. This simple model was found to be quite
accurate in frog muscle fibers (Boyle and Conway, 1941), but it does not apply generally. In table
2.1, we see that in the squid axon, [K+]i/[K

+]o ≈ 40 and [Cl−]o/[Cl
−]i ≈ 13. The situation

is similar in the cat motoneuron. We can see that the Nernst equation cannot fully explain the
resting potential of neurons, because it describes an equilibrium situation and the membrane
cannot be simultaneously at equilibrium for K+, Cl− and Na+, which have very different Nernst
potentials. We now consider the more general case when the membrane is permeable to these
three ion species.

2.2.3 A membrane permeable to K+, Cl− and Na+

Since the Nernst potentials of K+, Cl− and Na+ are different, there must be at rest a non-zero flux
of ions for at least two ion species. Therefore, we must assume that there is another mechanism
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Figure 2.11: Constant field theory. A, Electric field is assumed to be constant in the membrane,
so that electric potential varies linearly. B, Calculated GHK current for a 10-fold ratio of extra-
to intracellular concentration of Na+ at T = 37◦.

that ensures the stability of ionic concentrations. We will discuss this mechanism in section 2.2.4,
and simply assume for the moment that intracellular and extracellular concentrations are fixed.

In this case, the electrical equilibrium is reached not when all ionic currents are null, but
when the sum of the three currents is null. We call this situation a dynamic equilibrium. To
calculate the equilibrium membrane potential, we then need to know how each of these ionic
currents depends on Vm, i.e., their current-voltage relationship.

The current-voltage relationship of permeable membranes

In section 2.2.1, we have shown that for a channel permeable to a single ionic species S, the
ion flux and therefore the current IS

10 vanish when Vm equals the reversal potential (or Nernst
potential) ES of that ion species. Thus a simple model would consist in postulating that the
current depends linearly on Vm around ES (that is, we linearize the current-voltage relation
around ES):

IS = gS(Vm − ES)

where gS is homogeneous to a conductance (in siemens, S). Here we have adopted the convention
of seeing IS as an outward current (directed towards the extracellular space), that is, IS > 0
when positive charges leave the cell. This is an ohmic model because it is electrically equivalent
to a resistor of conductance gS (or resistance RS = 1/gS), which follows Ohm’s law, in series
with a battery ES . This model appears in the Hodgkin-Huxley model of the squid giant axon
(Hodgkin and Huxley, 1952).

Unfortunately, current-voltage relationships are generally not linear, even when membrane
permeability is fixed (remember that we only consider “passive” properties of membranes in this
chapter, i.e., with no voltage-dependent changes in the configuration of ionic channels). In a
number of cases this relation shows rectification, meaning that current passes more easily in one

10Current I is related to flux J by the equation I = zF.A.J , where z is the (signed) number of charges carried
by one ion, F is the charge of a mole of ions and A is the section area of the channel.
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direction than in the other one. Rectification occurs especially when ion concentrations on the
two sides of the membrane are very different. It has been shown by Goldman using a variety of
artificial membranes, who also proposed a simple model of the current-voltage relation (Goldman,
1943). The theory was then applied to neuron membranes by Hodgkin and Katz (1949). It is
based on the postulate that the electrical field E(x) is constant across the membrane (Figure
2.11A), and that ions of different species do not interact with each other. For this reason,
Goldman’s theory is often called constant field theory. The membrane permeability PS to ion
species S is defined as the ion flux divided by the concentration gradient across the membrane
in the absence of an applied electrical field11:

JD = −PS([S]o − [S]i)

With the same approach as in section 2.2.1, we find that the current carried by these ions
per unit of membrane area (in A/m2) equals:

IS = PSz
2
S

VmF
2

RT

( 1

1− exp(−zSVmF/RT )
[S]i

+
1

1− exp(zSVmF/RT )
[S]o

) (GHK current equation)

where zS is the signed number of charges carried by ion species S. A demonstration can be
found in (Hille, 2001; Tuckwell, 1988). This equation consists of two terms, corresponding to the
influx and efflux of ions. The two terms in brackets correspond to a weighted average of [S]i and
[S]o, where the weights depend on Vm (indeed these two weights sum to one12). An example is
shown on Figure 2.11B for the Na+ current13, in the case corresponding to the cat motoneuron
(concentrations in table 2.1), at T = 37◦.

Let us first consider the case when [S]i = [S]o, so that the expression in brackets is just [S].
In this case, the Nernst potential is ES = 0 mV, and the current IS is a linear function of Vm,
that is, it follows the ohmic model:

IS = PSz
2
S

F 2[S]

RT
Vm

and the conductance is the factor in front of Vm. We note that this conductance is a (linear)
function of [S]. Intuitively: there is more current when there are more ions in the medium. Thus
it is important to realize that the conductance of a ionic channel is a property that depends on
the context in which the channel functions, here ionic concentration in the medium, rather than
an intrinsic property of the channel.

In the more general case, [S]i 6= [S]o, the current-voltage relation is not linear. It is possible
to rewrite the GHK equation as a function of the Nernst potential ES :

IS = gVm
1− exp(zS(ES − Vm)F/RT )

1− exp(−zSVmF/RT )

11It can be shown that ion concentration C(x) should indeed increase linearly across the membrane when there
is no electrical field, according to Fick’s diffusion laws.

12using 1/(1 + ex) + 1/(1 + e−x) = 1.
13For numerical reasons, the following equivalent expression was used to plot this graph:

IS = PSz
2
S

VmF 2

RT

[S]i − [S]o exp(−zSVmF/RT )

1 − exp(−zSVmF/RT )

.
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where

g = PSz
2
S

F 2

RT
[S]i

has the dimension of a conductance. In this form, the current is expressed as a conductance
times a driving force, as in the ohmic model, except the driving force is a nonlinear function of
voltage. From this expression, we also notice that IS = 0 at the Nernst potential, as expected.

For Vm = 0 mV, the definition of membrane permeability can be recovered from the GHK
current equation (technically, one must calculate a Taylor expansion of the exponential):

IS = PSzSF ([S]i − [S]o)

At large positive and negative potential, IS(Vm) is asymptotically linear. Let us assume that
zS > 0, i.e., ion S carries a positive charge. Then at hyperpolarized voltages (Vm << 0):

IS ≈ PSz
2
S

F 2[S]o
RT

Vm

and conversely at depolarized voltages:

IS ≈ PSz
2
S

F 2[S]i
RT

Vm

In both cases, the current follows an ohmic model, but the conductance depends on the
direction of the current. This behavior is called rectification. Using this current-voltage relation-
ship, we can now calculate the resting potential when the membrane is permeable to several ion
species.

The Goldman-Hodgkin-Katz voltage equation

What is the equilibrium potential in the GHK model? First, when there is a single ion species,
we recover the Nernst potential by setting IS = 0. If we consider several ion species, for example
Na+, K+ and Cl−, then setting INa+ + IK+ + ICl− = 0 gives the following equilibrium potential:

Vm =
RT

F
log

PNa[Na+]o + PK [K+]o + PCl− [Cl−]i
PNa[Na+]i + PK [K+]i + PCl− [Cl−]o

(GHK voltage equation)

The GHK voltage equation can be extended to divalent ions (i.e. Ca2+) (Tuckwell, 1988). It
is broadly used to calculate resting potentials, and tends to give good results (see for example
Hodgkin and Katz (1949) for the squid axon). It is quite different from the result obtained with
the ohmic model of ionic currents. Indeed if ionic currents were linear functions of voltage, then
the resting potential would be:

Vm =
gNaENa + gKEK + gClECl

gNa + gK + gCl

where gS are channel conductances. But this simpler formula generally does not work as well
as the GHK equation. In practice, permeabilities are not directly measured, but rather are free
parameters found by fitting the GHK equation to data (see Tuckwell (1988) for the relevant
methods).
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Figure 2.12: Two ionic pumps: the Na+/K+-ATPase, which uses ATP as a source of energy, and
the Na-K-Cl cotransporter (NKCC1, right), which uses the Na+ gradient as a source of energy.

Biophysical subtleties

It is important to realize that both the ohmic model and the GHK model of membrane electrod-
iffusion are idealized models, based on a number of assumptions. The GHK model, for example,
assumes a constant field across the membrane and independence of ion movements. The first
assumption could be wrong in a number of cases because of the phenomenon of adsorption, where
molecules such as ions can adhere to the membrane by surface forces (McLaughlin, 1977). These
surface charges create a discontinuity in electric potential as the layer of adsorbed ions is crossed.
This phenomenon has been first postulated in squid and Xenopus nerve (Frankenhaeuser, 1960).
It is also thought to occur for example in Paramecium (Eckert and Brehm, 1979), where it might
be quite important as the extracellular environment is highly variable in natural environments.
The GHK model can be updated to take into account this phenomenon (Frankenhaeuser, 1960;
Tuckwell, 1988).

The independence hypothesis is also not accurate in general. One example is that the con-
ductance of a single channel, measured with the patch clamp technique in symmetrical solutions,
often saturates when ion concentration is increased. This and other phenomena are addressed
in detail in (Hille, 2001).

2.2.4 Ion pumps

At rest, there is a constant flux of K+, Cl− and Na+ ions. This would ultimately lead to
the disappearance of concentration gradients across the membrane if there were no opposing
mechanism. The maintenance of concentration gradients is ensured by the activity of ion pumps
or ion transporters. These are transmembrane proteins that move ions across the membrane.
This movement requires energy. A number of ion pumps use the energy stored in concentration
gradients across the membrane (Figure 2.12). For example, the Na-K-Cl cotransporter (NKCC1)
moves Na+, K+ and Cl− into the cell in a 1:1:2 ratio, which makes it electroneutral. Energy is
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provided by the Na+ gradient. The chloride potassium symporter (KCC2) expels K+ and Cl−

(also electroneutral); energy is then provided by the K+ gradient. It can be seen indeed on table
2.1 that [K+]i/[K

+]o > [Cl−]o/[Cl
−]i (see section 2.2.2).

But of course this type of ion pump can only work if the concentration gradients are already
established, and therefore ultimately another source of energy is required. The main source of
energy in the cell is ATP (adenosine triphosphate). It provides energy in particular to a ionic
pump called Na+/K+-ATPase: for one molecule of ATP, 3 Na+ ions are moved out while 2 K+

ions are moved in, both against their concentration gradients. The activity of this ion pump
contributes a large part of the energy spent by neurons (Attwell and Laughlin, 2001; Howarth
et al., 2012). We notice that one net positive charge leaves the cell for every ATP molecule.
Therefore, the activity of the pump creates an outward (hyperpolarizing) current. The pump is
said to be electrogenic, and therefore it impacts the resting potential. The GHK voltage equation
can be modified to incorporate this effect (Tuckwell, 1988).

There is another electrogenic pump in neurons, the sodium-calcium exchanger, which expels
one Ca2+ ion from the cell in exchange of three Na+ ions moved into the cell. It uses the Na+

gradient as a source of energy. Another important pump is the plasma membrane Ca2+ ATPase
(PMCA), which uses ATP to move one Ca2+ ion in and two H+ ions out (Thomas, 2009).

These considerations will be important when we discuss the energetic consumption of neurons
in chapter ??.

2.3 Osmosis and mechanics

Electrophysiological theory traditionally focusses on movements of ions. Here we will give a brief
overview of two other biophysical phenomena that are in principle relevant to the matter of this
book: movement of water and movement of membrane. The rest of this book will largely ignore
them, but it is important to be aware of what models neglect.

We have noted that biological membranes are permeable to water. Osmosis is the flow
of water across a semipermeable membrane into a region of higher solute concentration. It
results in changes in ion concentrations and cell volume, in a way that tends to equalize solute
concentrations on the two sides of the membrane. Let us examine ion concentrations for the
squid giant axon in table 2.1 (p 10). If we add the concentrations of all extracellular ions, we
obtain about 1 M. As we already noted, the list of intracellular ions does not include the large
number of organic anions that are necessary to ensure electroneutrality. But we can deduce from
the table that their concentration should be on the order of 500 mM so as to match the positive
charge of cations14. Thus the total concentration of intracellular anions is also about 1 M, and
the cell is in osmotic equilibrium. More precisely, osmosis depends on osmotic concentrations or
osmolarity, which are slightly different from molar concentrations to account for non-idealities
of solutions.

Osmosis is often described as the diffusion of water through the membrane for didactical
reasons, but its physical basis is in fact quite different (Kramer and Myers, 2013). Consider the
ions dissolved in the intracellular medium. When they randomly hit the membrane under the
effect of thermal agitation, ions are reflected and this momentum is transmitted to the water
molecules. This produces in a force exerted on the fluid, directed away from the membrane,
that is, directed inward. The resulting pressure (force per unit membrane area) is given by van’t
Hoff’s law (under ideal conditions):

Posmotic = [solute]RT (van’t Hoff’s law)

14This is of course a rough estimate, as it depends on the number of charges per molecule.
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This expression is analog to the law of ideal gases. In other words, for the calculation of
pressure, a solution behaves essentially like a gas of ions. The same holds for the extracellular
side, with a force directed outward. As the membrane is permeable to water, there is a flow of
water per unit area equal to

Q = −∆Posmotic/Rflow

where Rflow is the membrane resistance to water flow. In other words, water flows from regions of
low to high ion concentrations. A detailed mathematical treatment of osmosis and its interaction
with membrane electrodiffusion can be found in (Hoppensteadt and Peskin, 2004).

Thus if the extracellular medium has lower osmolarity than the intracellular medium (lower
ion concentrations), then water flows in and the cell swells. As a result, intracellular osmolarity
decreases and an equilibrium may be reached. If the osmolarity difference is too large, the cell
may explode and die. Conversely, if extracellular osmolarity is larger, then the cell shrinks. This
phenomenon is of great importance for patch-clamp electrophysiological experiments, in which a
large pipette is brought to contact with the membrane and the membrane is ruptured. The liquid
content of the cell is then mixed with the pipette solution, which is much larger, and membrane
stability requires the pipette solution to have the same osmolarity as the extracellular medium.

Osmosis also implies that transmembrane movements of ions should result in volume changes,
and therefore in changes in the concentration of all intracellular ions. This effect has indeed be
observed in neurons (Tasaki et al., 1985), but it is neglected in standard electrophysiological
theory. We can estimate the expected magnitude of the effect for an action potential as we have
done in section 2.2.1. During the rising phase of the AP, N moles of Na+ ions enter the neuron.
If we assume that the volume V changes by ∆V so as to preserve intracellular osmolarity O (in
units of Osm/L, which is roughly equivalent to mM), then:

O.V +N = O.(V + ∆V )

This means that the volume change due to Na+ entry is ∆V = N/O. Suppose that the neuron
is depolarized by about 100 mV. This corresponds to a net movement of charges equal to Q =
cm.A.100 mV where cm is the specific capacitance of the membrane (around 1 µF/cm2) and A
is membrane area. This charge corresponds to N = Q/F moles of Na+. Therefore, we have:

∆V

A
=
cm.100 mV

O.F

Looking at table 2.1, we see that the osmolarity of a cat motoneuron’s intracellular medium
should be around 300 Osm/L. With these numbers, we find:

∆V

A
≈ 35 pm

For a cylinder (e.g. an axon), the ratio of volume to area is the diameter divided by 4,
and therefore we would expect a change in diameter of about 140 pm (0.14 nm) at the peak of
an AP. For a sphere, this ratio is diameter divided by 6, and therefore would expect a change
in diameter of about 210 pm (0.21 nm). The repolarization phase of the AP would have the
opposite osmotic effect on cell volume. Thus there should be a transient change in volume due
to osmotic effects during an AP, but it should be tiny. Therefore it is reasonable to neglect its
effect on ionic concentrations. The net change in volume after an AP should be even smaller,
but not zero because even if electroneutrality is respected, ions of similar osmolarity can carry
different numbers of charges and osmolarity can be slighly different for different ion species with
the same valence.
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The cell can change volume due to osmosis, but it may also change shape, i.e., it can bend.
This can occur by osmosis but also by the effect of the electrical field applied to the membrane,
which can change membrane curvature. This may theoretically result in the propagation of a
mechanical wave along the axon, accompanying the action potential wave (El Hady and Machta,
2015). The propagation of a mechanical wave of about 2 nm amplitude has indeed been measured
in a crayfish axon (Hill et al., 1977) (which has a diameter of 180 µm), with the same velocity as
the action potential. The potential importance of this phenomenon is that the properties of ionic
channels can in turn be affected by membrane curvature (Anishkin et al., 2014). If the effect were
substantial, then action potential propagation should be modeled as an electromechanical wave.
As we will see in chapter ??, in the classic work of Hodgkin and Huxley, a biophysical model
of the action potential was fitted to measurements in an isopotential squid giant axon, that is,
where a metal electrode was inserted into the axon so as to make it isopotential (Hodgkin and
Huxley, 1952). The model was based on electrodiffusion theory and did not include mechanical
effects. When the model was extended to include electrical propagation along the axon (i.e., with
axial currents), the predicted conduction velocity was found to be within 20% of the measured
velocity. This suggests that electromechanical effects are not dramatic (at least in the squid
giant axon), but the question is still open as to whether they might nonetheless be significant.

An introduction to the physics of cell membranes can be found in (Phillips et al., 2008).

2.4 Summary and epistemological notes

Membrane polarization is classically explained by electrodiffusion through a semi-permeable
membrane, resulting from the opposing effects of diffusion and electrical forces on the move-
ment of charged molecules (ions). At a general level, this theory has been very well tested and
confirmed. Let us review the main concepts.

Ions move by diffusion through the membrane. As they carry an electrical charge, the resulting
charge imbalance around the membrane creates an electrical field. In turn, the electrical field
exerts a force on the ions in the opposite direction. Thus, for every ion species, there is a value of
the electrical field, and therefore of the membrane potential, for which there is no net movement
of ions across the membrane: we then call this value the reversal potential. The reversal potential
equals the Nernst potential when the membrane is permeable to a single ion species (p 15). It
is also the Nernst potential when the membrane is permeable to several ion species, for each of
the ion species, under the assumptions of Goldman-Hodgkin-Katz (GHK) theory (constant field
and independence of ions, p 18). We have noted cases in which GHK theory must be amended.
When the membrane is permeable to several ion species with different reversal potentials, then
the equilibrium potential or resting potential lies somewhere between these reversal potentials.
A theoretical prediction for that value is provided by GHK theory, which is fairly successful
(p 19). At equilibrium, there must then be non-zero ion fluxes that balance each other, and
therefore intracellular concentrations would be expected to change and ultimately concentration
gradients across the membrane should disappear. Stable ionic concentrations are maintained by
ionic pumps, and this requires external energy, provided in the form of ATP.

Beyond these important general points, the situation is rather complex. As we will see in the
next chapter, ionic currents are often presented as following the ohmic model, i.e., as a battery
representing the Nernst potential in series with a resistor representing the “conductance” of the
channel. This should be seen not as a biophysical fact but rather as a convenient simple model.
We will largely use this simple model in the rest of this book, but it should kept in mind that the
ohmic model can be inaccurate and misleading. It can be inaccurate because in many cases the
current-voltage relationship is not linear even if we only consider so-called “passive” properties
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of membranes, that is, with no change in permeability (no change in channel conformation). It
can be misleading because even when the current-voltage relationship is approximately linear,
the quantity that we call “channel conductance” is not a physical characteristic determined by
membrane permeability alone, but it depends also on ionic concentrations (as appears clearly in
the expression of the GHK current p 18).

This brings us to an important epistemological point, which is that there are no observations
or measurements independent of theory. When we say that we measure the conductance of a
channel, or of the membrane, what we really mean is that we assume that the membrane follows
the ohmic model (we might check whether the current-voltage relationship is linear enough),
and then we divide current by driving force (V − ES) and call the result conductance. In the
same way, when we say that we measure the permeability of the membrane to various ions,
what we really mean is that we fit the GHK equation to current-voltage data and call the best
fitting values the membrane permeabilities. This is true also of seemingly trivial concepts, for
example the membrane potential. The way the membrane potential is typically measured is by
inserting an electrode into a cell and measuring the voltage difference between that electrode
and a reference electrode at a fixed position far from the cell. What we actually measure then is
rather the intracellular potential Vi, but we call it the membrane potential Vm = Vi−Ve because
we assume that the extracellular medium is isopotential, or at least that the potential difference
between the reference electrode and the extracellular space next to the cell is constant, which
clearly is an approximation.

A very important point then, is that models can be wrong in two very different ways. One
trivial way is lack of precision: the model depends on a number of parameters (e.g. conductances)
and the parameter values can only be known empirically with limited precision. We might call
this metric uncertainty. But there is a deeper way in which a model can be wrong: a model
is a particular choice of abstraction and it always captures a limited part of a complex system.
For example, we have presented the standard electrodiffusion theory of membranes, but it might
be that electromechanical effects turn out to be important for some questions. If this is true,
then we will need different models and different types of measurements (membrane elasticity,
cytoskeleton properties. . . ), not just more electrophysiological measurements. This is not metric
uncertainty but rather epistemic uncertainty, a much more important (and interesting) type of
uncertainty. Thus, a model does not necessarily become more realistic because it is based on
more measurements, or has more variables. Because of these two sources of model uncertainty,
theoretical analysis is most powerful when it is abstract, that is, when it applies not to a particular
model but to an entire class of models. In this sense, it is very different from simulation, which
applies to a particular model. We will try to keep this notion in mind when we discuss excitability
and other topics.

In the end, what is a model of a natural system? A model consists of three key ingredients
(see Rosen (1985) for an excellent epistemological discussion of models). First, a mapping from
the system to a set of values, which we call “measurements”. Second, a set of possible actions
on this system, which we call “experiments”. Third, a set of postulated relationships between
measurements, and between actions and measurements. We never have direct access to a natural
system, and the same system can have many models. An accurate model is a model for which
the postulated relationships are accurately verified; but a good model also has the quality that it
applies to a large number of relationships, i.e., it has a large empirical content (see Brette (2015)
for a discussion of these concepts in the context of neuron models).

With these general notions in mind, we will now turn to the biophysical basis of action
potentials.
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