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Chapter 3

Action potential of an
isopotential membrane

3.1 Experimental preparations

3.1.1 The space-clamped squid giant axon

The first quantitative model of action potentials was a model of the action potential of the
space-clamped squid giant axon, conceived and experimentally tested by Hodgkin and Huxley
(Hodgkin and Huxley, 1952a). By space-clamped, we mean that the intracellular potential of
the axon is maintained spatially uniform over its length. The Hodgkin-Huxley model was the
culmination of a series of 5 papers (120 pages) by Hodgkin, Huxley and Katz, published in the
Journal of Physiology in 1952 (Hodgkin et al., 1952; Hodgkin and Huxley, 1952c,b,d,a).

As already discussed in chapter ??, the squid giant axon had been introduced in the 1930s
as a model of choice for electrophysiology because of its very large diameter (up to 1 mm).
It is a rather peculiar axon as it is one of the few exceptions to the neuron doctrine, i.e.,
it is not a neurite of a cell, but it results from the fusion of hundreds of cells, a syncytium
(Young, 1936) (see Fig. ??). In addition, the Hodgkin-Huxley model, which we will present in
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Figure 3.1: Electrophysiological apparatus used by Hodgkin and Huxley to measure current-
voltage relationships in the squid giant axon (Hodgkin et al., 1952). The current wire is exposed
over 15 mm.
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Figure 3.2: Experimental configuration for electrophysiology in Paramecium.

detail in section 3.4, was established from the space-clamped axon, an experimental preparation
where the axon’s intracellular medium is made isopotential by inserting a metal wire inside it.
Figure 3.1 is a simplified representation of the experimental apparatus: two wires are inserted
into the axon, one in which current is passed and another one used to measure intracellular
potential. Reference electrodes are placed outside the axon. The current wire is exposed over
15 mm, and this makes the intracellular medium of the axon isopotential. This configuration
was critical to measure current-voltage relationships of the membrane: without the space clamp,
currents would be measured coming from different portions of the membrane where the membrane
potential is uncontrolled. What textbooks usually refer to as the Hodgkin-Huxley model is thus
not exactly a neuron model (the squid giant axon does not belong to a neuron anyway), but a
model of the space-clamped squid giant axon. Nonetheless, Hodgkin and Huxley also successfully
extended their model into a model of the propagating AP of the squid axon (chapter ??), and
the biophysical basis of APs has been shown to be very similar in neurons and all other excitable
cells.

3.1.2 Paramecium

In this chapter, we will focus mainly on the squid giant axon. But in parallel, we will also present
the action potential of Paramecium for two reasons. First, Paramecium is an isopotential cell in
its natural state. Second, the biophysical basis of its action potential is also based on the opening
of ionic channels, but the depolarizing phase of the AP is due to the entry of Ca2+ ions rather
than Na+ ions in the squid giant axon. This will illustrate the diversity of action potentials.
As mentioned in chapter ??, calcium APs are also seen in a variety of excitable cells, such as
developing neurons, invertebrate muscles and sperm. Calcium channels with similar properties
as those of Paramecium are also found in vertebrate neurons.

In the 1960s and 70s, there was a community of electrophysiologists interested in Paramecium
for several reasons. One is that there is a direct relation between electrical activity and behavior:
the action potential triggers a change in swimming direction (see section ??). Another one is that
electrophysiological recordings are relatively easy to perform because the cell is large: around
200 µm long (remember that the cell body of a neuron is around 30 µm large). Two glass
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Figure 3.3: Pipette resistance. A, Truncated cone representing the pipette tip. B, Voltage
response of a neuron to a current pulse, as measured at the amplifier end (simulated traces),
with intracellular potential shown in dashed. Top: the electrode is seen as an ideal resistance;
middle: the electrode also has a capacitance; bottom: electrode voltage corrected by the amplifier
(bridge balance or series compensation).

microelectrodes, with very sharp tips that can pierce the membrane, are inserted into the cell
(Fig. 3.2). One is used for passing current, the other for recording voltage (the third electrode
outside the cell is the reference). By inserting a second voltage electrode on the other side of the
cell, it can be checked that the membrane potential is the same at different locations inside the
cell1 (Eckert and Naitoh, 1970). However, Paramecium is not a spatially homogeneous cell since
ionic channels responsible for APs in Paramecium are located in the cilia (Ogura and Takahashi,
1976). It might be that cilia are not isopotential.

3.1.3 Electrophysiological techniques

We now present a brief overview of the techniques used to measure electrophysiological properties
of membranes. More detail can be found in (Molleman, 2002) for the practical aspects, and in
(Brette and Destexhe, 2012) for the technical and modeling aspects.
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Pipette resistance

Figure 3.2 shows a typical configuration where current can be injected through an electrode,
and the voltage response of the cell is measured at another electrode. We often use the term
“electrode” to refer to the pipette, which is a glass capillary that is pulled so as to make a fine
tip, while the electrode is more precisely the interface between the wire inside the pipette and
the electrolyte. Why do we need two separate electrodes and not just one, in addition to the
reference electrode? This is because the electrolyte inside the pipette has an electrical resistance,
which depends on the geometry of its tip. It is a good exercise to calculate this resistance, and
we will encounter this type of question again when we study cable theory in chapter ??.

Let us assume that the pipette tip is a truncated cone of tip diameter d0 and angle θ, defined
from the symmetry axis (Figure 3.3A). We cut this cone in thin cylindrical slices of diameter
d(x) and thickness dx, where x is distance from the untruncated cone tip. The pipette tip is at
distance x0. What is the resistance of a cylinder? The amount of current that passes through it
is proportional to its section area πd2/4, and therefore its resistance (inverse of conductance) is
inversely proportional to it. Its resistance should be proportional to its length, because resistances
in series add. Therefore, the resistance of a thin cylinder should be:

R(x) =
4dx

πd(x)2
Ri

where Ri is a proportionality coefficient that we call intrinsic resistivity, in Ω.m. This is the
resistivity of the electrolyte, with order of magnitude 1 Ω.m. The intracellular and extracellular
media also have a resistivity, of roughly the same order, often expressed in Ω.cm (1 Ω.m = 100
Ω.cm). Thus the total resistance of the truncated cone over a length L is:

Re =
4Ri
π

∫ L

x0

dx

d(x)2

(Re for electrode resistance).
From d(x) = x tan θ, we obtain:

Re =
4Ri

π tan2 θ

∫ L

x0

dx

x2

=
4Ri

π tan2 θ

[
− 1

x

]L
x0

=
4Ri

π tan2 θ
(

1

x0
− 1

L
)

We can see that if the cone is long enough compared to the tip diameter (which does not
exceed a couple of µm), then we can neglect its length. In other words, it does not matter exactly
where the wire ends in the pipette. Finally, we use d0 = x0 tan θ and we get:

Re =
4Ri

πd0 tan θ

The conclusion is that pipette resistance is inversely proportional to tip diameter. For exam-
ple, with tip diameter 1 µm, Ri = 1 Ω.m and θ = π/4 (i.e., the pipette makes a right angle), we

1More precisely, the variations of membrane potential are identical; the precise value of the membrane potential
is not very reliable with sharp microelectrodes because of tip potentials (Brette and Destexhe, 2012).
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obtain Re ≈ 1.3 MΩ. Microelectrodes used in paramecium, as well as in neurons until the devel-
opment of the patch-clamp technique (see next section), have a very sharp tip of 0.01− 0.1 µm
in diameter. They had been developed by Ling and Gerard (1949) by pulling glass capillary
tubes, resulting into a very fine tip that can penetrate cell membranes. This produces pipette
resistances (also called electrode resistance or series resistance) of order 10−100 MΩ. Thus when
a current I = 1 nA is passed through an electrode with pipette resistance Re = 100 MΩ, there
is a potential difference between the electrode (the wire) and the pipette tip of ReI = 100 mV.
Thus the electrode potential can be very different from the intracellular potential. An example is
shown on Figure 3.3B (top), where a current pulse is injected through the electrode and voltage
is measured at the amplifier end: a bias is observed during current injection (real intracellular
potential in dashed). There are additional difficulties: the pipette and the amplifier input also
have capacitive properties (Fig. 3.3B, middle), there can be voltage offsets due to junction and
tip potentials2 when the cell is impaled, and the resistance generally changes when the electrode
penetrates the membrane. The resistance when the intracellular medium is accessed is often
called access resistance. Thus it is generally preferable to use two electrodes to pass currents
and measure voltages when the cell is isopotential over the distance between the electrodes.

Single-electrode techniques

Modern amplifiers allow measuring voltage with the same electrode that passes current, and
most reported traces in the modern literature are obtained from single-electrode recordings. The
idea is simply to subtract the estimated pipette voltage from the measured voltage. An example
is shown on Figure 3.3B (bottom). One subtracts R∗eI from the measured trace (Fig. 3.3B,
middle), where R∗e is the estimated electrode resistance. This technique is called bridge balance
or series compensation. The main difficulty is to obtain that estimate. In older amplifiers,
this was done by eye: estimated resistance is increased until the trace “looks right”. Digital
amplifiers can do this estimation automatically, but the procedure is not fundamentally different;
essentially, it consists in fitting a model of the response to the measurement (for example a sum of
exponentials). Thus there is some imprecision in the estimation of Re. Additionally, there is also
a capacitive current through the pipette wall and at the amplifier, and therefore applying bridge
balance results in the appearance of capacitance transients in the trace (Fig. 3.3B, bottom).
Amplifiers generally include a capacitance neutralization circuit, which consists in injecting a
negative capacitive current −C.dV/dt. This circuit reduces but does not suppress capacitive
transients. As it is a feedback circuit, it can also be unstable and increase noise. There are
a few alternative techniques for dealing with electrode artifacts, such as discontinuous current-
clamp (DCC), where current injection and voltage measurement are performed in alternation at
high rate (Brennecke and Lindemann, 1974), and active electrode compensation (AEC), where a
non-parametric model of the electrode is used to estimate electrode voltage (Brette et al., 2008).
These are reviewed in (Brette and Destexhe, 2012). None of these techniques guarantees perfect
estimation of the intracellular potential.

At the end of 1970s, Neher and Sakmann developed a collection of techniques called patch
clamp (Neher and Sakmann, 1976; Sigworth and Neher, 1980) (Fig. 3.4). Patch clamp uses glass
pipettes with a larger tip, of order 1 µm. Sucb pipettes are not sharp enough to penetrate cells.
Instead, the pipette is brought into contact with the membrane and a small suction is applied.
The glass then forms a high-resistance seal with the membrane (> 1 GΩ). This is the cell-
attached configuration, which is used record to currents through the small patch of membrane

2The liquid junction potential is due to differences in electrolyte compositions and can be calculated, but there
is also a tip potential at the cell/electrode interface when the tip is very thin, and this potential is difficult to
predict (Purves, 1981).
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whole-cell
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Figure 3.4: Patch-clamp technique with different configurations.

under the pipette. By applying a strong suction, the membrane is ruptured and the pipette is
then in contact with the intracellular medium. This is the whole-cell configuration. It is used in
the same way as sharp microelectrodes, with the additional advantage that pipette resistance is
much lower and there is no leak due to the microeletrode piercing the membrane. A disadvantage,
however, is that the electrolyte in the pipette diffuses into the cell and eventually replaces it (since
it has a much larger volume). Therefore, the pipette solution has to be carefully prepared and
in any case intracellular pathways are highly disrupted. A variation of the technique has been
introduced to deal with this issue, the perforated patch, where the pipette contains antibiotics and
is brought in cell-attached mode. The antibiotics progressively forms pores into the membrane,
giving electrical access (with higher resistance) without making the membrane permeable to
large molecules. The initial motivation of patch-clamp was in fact not to record the intracellular
potential of a cell but rather to record transmembrane currents through ionic channels. This
can be done in two ways. The first way is to bring the pipette in cell-attached configuration
then pull it, bringing with it a small patch of membrane. This is the inside-out configuration.
The second way is to bring the pipette in whole-cell configuration then pull it, bringing with it
a small disrupted patch of membrane that reseals, with the outside now facing the extracellular
medium. This is the outside-out configuration. With the patch clamp technique, it is possible
to record currents flowing through a single channel (see section ??). In any case, patch-clamp,
as all other techniques, is not ideal since the intracellular medium is not preserved (except for
perforated patch, which has higher access resistance). It is also not universal, and in particular
it cannot be used in an intact Paramecium, because of the cilia and inner membranes.

Current clamp and voltage clamp

The configuration when we record the voltage response of the membrane to a current, as shown
for example on Figure 3.3, is called current clamp. Current clamp is not appropriate to measure
the current-voltage relationships of different ionic channels. The first reason is that the mem-
brane has a capacitance that produces a current C.dV/dt (C is membrane capacitance) when
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the membrane potential varies, and therefore the current flowing through the membrane does
not equal the current passing through the electrode. To suppress the capacitive current, the
membrane potential must be constant. The second reason is that to measure voltage-dependent
changes of permeability, one wants to precisely control voltage. For these two reasons, in the
1940s Marmont and Cole designed the voltage clamp technique (Marmont, 1949; Cole, 1949),
where the current necessary to maintain the membrane potential at a given value is measured.
The basic principle is a feedback system: current is injected when the potential deviates from
the target value. In its simplest form: I = g(Vc − Vm), where Vc is the command potential
(target), Vm is the measured membrane potential and g is a large feedback gain. If the gain
is large enough, then Vm ≈ Vc and I is recorded. When the membrane potential is clamped,
the electrode current exactly matches the membrane current flowing in the opposite direction.
Modern amplifiers use additional techniques borrowed from control theory (Astrm and Murray,
2008).

As for current clamp, electrode resistance poses an issue for single-electrode voltage clamp.
The feedback system ensures that the amplifier end of the electrode is clamped at the command
potential Vc. However, if a current I passes through the electrode to maintain that potential, then
the actual membrane potential is not Vc but Vc+ReI, where Re is the electrode resistance (more
precisely, access resistance as it typically increases when accessing the intracellular medium).
Compensation methods are used to deal with this issue, but they do not entirely solve the
problem. We can see that the issue is particularly important when measuring large currents,
as for example the Na+ currents responsible for AP initiation. For this reason, in the two
experimental preparations that we are going to study in this chapter, two electrodes were used
for voltage clamp: one to pass current and another one to measure voltage (Figs 3.1 and 3.2).

There are a number of variations around current clamp and voltage clamp. One is dynamic
clamp, where the injected current is a function of the measured potential, used in general to
mimick ionic currents (Bal and Destexhe, 2009). Another one is action potential clamp, where
the voltage waveform of an action potential is recorded in current clamp and then used as
time-varying command potential in voltage clamp (Carter and Bean, 2009). Optical techniques
are also increasingly used to measure the membrane potential and to inject current (Emiliani
et al., 2015). However, at the time of writing, these have not reached the level of precision of
standard electrophysiological techniques, although they have other advantages, in particular the
ability to simultaneous measure membrane potential in the entire cell. Membrane potential can
be measured with transmembrane voltage sensors coupled to a fluorescent molecule, which are
either injected or genetically expressed. The intensity of the fluorescent signal correlates with
membrane potential. The main issues are calibration (mapping optical intensity to membrane
potential), noise (high in small structures), response speed and toxicity. Current can be injected
by optogenetic techniques, in which a light-sensitive channel is expressed in the membrane. Again
calibration and response speed are important issues, because transduced current is not a linear
function of light intensity. This chapter will be based mainly on results obtained with standard
electrophysiological techniques.

3.2 Passive properties of the isopotential membrane

3.2.1 Resting potential

In chapter ??, we have seen that membrane polarization is due to ionic concentration gradients
across the membrane combined with membrane permeability to specific ions. In the squid giant
axon, Hodgkin and Katz showed that the effect of concentration changes on the resting potential
were well predicted by GHK theory (??), assuming the ratios of membrane permeability to K+,
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Intracellular Extracellular ES
concentration (mM) concentration (mM) (mV)

Squid axon K+ 410 10 -93
Na+ 49 460 56
Cl− 40 540 -65

Paramecium K+ 1 40 -92
Ca2+ 10−4 1 230

Table 3.1: Concentrations of the main ions of the cytosol and extracellular medium in the squid
giant axon (Hodgkin, 1951), and estimates in Paramecium in a solution with 1 mM KCl and 1
mM CaCl2 (Machemer, 1998), and corresponding Nernst potentials ES at T = 20◦C (see section
??).

Cl− and Na− are around 1:0.45:0.04 (Hodgkin and Katz, 1949). The basis of the resting potential
in the squid axon (and other preparations, e.g. the frog muscle) was also confirmed by radioactive
tracers, used to measure ionic fluxes at rest (Hodgkin, 1951). The resting potential of the squid
giant axon depends on temperature, and is around −60 mV.

In Paramecium, the resting potential is of order −30 mV and it also varies with extracellular
ionic concentrations, in particular K+ and Ca2+. Table 3.1 gives estimated orders of magnitude
for intracellular concentrations of K+ and Ca2+ in Paramecium, in a solution with 1 mM KCl
and 1 mM CaCl2 (Machemer, 1998). There is normally very little Ca2+ inside the cell, perhaps
of order 10−7 M, as in other cells (including neurons). That concentration rises in the cilia during
the action potential. When it exceeds 10−6 M, the cilia beat in the reverse direction (Naitoh and
Kaneko, 1972).

However, the basis of the resting potential appears more complex in Paramecium than in the
squid axon. It varies in complex ways with the concentration of various extracellular cations.
Not only does the resting potential vary with extracellular concentrations, but current-voltage
relationships appear to shift. This is thought to be due to competitive binding of cations (in-
cluding Ca2+) to anionic sites on the outer membrane and the development of a surface potential
(Eckert and Brehm, 1979). The phenomenon is sketched on Figure 3.5. Paramecium lives in
freshwater, where ionic concentrations are much lower than in the sea or in the extracellular
space around neurons. The lipids forming the membrane carry negative charges, which produces
an electrostatic potential away from the membrane (Fig. 3.5A). Consequently, the membrane
potential is smaller than the potential difference measured away from the membrane. When ex-
tracellular ionic concentration is high, cations (for example Ca2+) bind to the anionic sites of the
membrane, which act as a “screen” for the surface charges (Fig. 3.5B). The membrane potential
is then larger. Because the manipulation of extracellular Ca2+ concentration (and a number of
other cations) shifts the current-voltage relationships, it is thought that the membrane is actu-
ally mostly permeable to K+ at rest and the effect of extracellular Ca2+ is mostly on surface
potential (i.e., a global shift of the membrane potential). Clearly GHK theory is not sufficient
to model current-voltage relationships in this case, but in the following, we will assume that the
composition of the extracellular medium is fixed, so we will not deal with these complexities.

3.2.2 Membrane capacitance and resistance

The bilipid membrane is a thin insulator between two conducting media (the electrolytes). Elec-
trically, it behaves as a capacitor, that is, the membrane can store electrical charge by having
positively charged particles (in this case, ions) on one side and an equal amount of negatively
charged particles one the other side. Charge is proportional to the potential difference between
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Figure 3.5: Screening of surface charges by extracellular cations in Paramecium membrane (grey).
A, In low ionic-strength medium, fixed negative charges on the membrane produce a surface po-
tential, so the potential difference Vm acting on the membrane is smaller than the total potential
difference between intra- extracellular medium (the curve represents the potential). B, In high
ionic-strength medium, cations (e.g. Ca2+) bind to the anionic sites on the membrane, screening
the surface charges, so Vm is larger.

the two sides, and the proportionality coefficient is called capacitance. Let us denote Q the total
charge on the inner side of the membrane. Then Q and Vm are related by:

Q = C.Vm

and C is the membrane capacitance, expressed in Farad (F). Total charge scales with membrane
area, and therefore capacitance also scales with membrane area. Thus membrane capacitance
can be written as

C = cm.area

where cm is called the specific membrane capacitance in units of F/m2. In neurons, cm ≈ 1
µF/cm2.

Membrane capacitance can be measured by applying short electrical shocks, i.e., by injecting
a short and strong pulse of current through an intracellular electrode. Hodgkin et al. (1952)
used the apparatus shown in Fig. 3.1 to apply short shocks of different magnitude on the space-
clamped squid giant axon. The total charge Q is the integral of the current: Q =

∫
I, in

units of Coulomb (C). In Figure 3.6A, a negative charge was transferred, and we can see that
the instantaneous effect on the membrane is a hyperpolarization (Vm becomes more negative)
proportional to the charge: ∆Vm = Q/C. In the figure, the charge per unit membrane area
qm = Q/A is reported. Membrane area A was simply calculated as a the area of the cylindrical
axon membrane around the part of the electrode exposed to the intracellular medium. We then
deduce the specific membrane capacitance: cm = qm/∆Vm ≈ 0.9 µF/cm2. The same relation
between charge and initial depolarization is seen when positive charges are transferred, but in
this case action potentials are triggered (Fig. 3.6B).

This calculation could only be done because the axon was made isopotential. Specific mem-
brane capacitance can generally not be measured in this way in neurons, because a current
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A B

Figure 3.6: Capacitance of the squid giant axon. Short electrical shocks of different magnitudes
(total charge in pC/cm2) are applied to the axon, and the membrane potential is recorded (0
mV means resting potential) (Hodgkin et al., 1952). A, Hyperpolarizing shocks. B, Depolarizing
shocks, which trigger action potentials.

injected in the soma does not uniformly depolarize the membrane. Additionally, although it is
customary to consider specific membrane capacitance as a biological constant, we must keep in
mind that the membrane is crowded and therefore its composition is likely to have some influence
on capacitance. The influence of Na channel density on membrane capacitance is considered for
example in (Hodgkin, 1975).

After the initial shock, we note in Fig. 3.6A that the membrane potential relaxes to the
resting potential. Indeed, when no current is applied through the membrane, we know that the
membrane potential stabilizes at a fixed equilibrium value, the resting potential. To understand
the dynamics of this relaxation, we need to introduce the concept of capacitive current. Suppose
an inward (positive) current I is injected through the electrode. Current is the flow of charge;
therefore the charge Q increases because of the positive current I: Q = Q0 +

∫
I or equivalently

dQ/dt = I. Using the relation Q = C.Vm, we deduce:

C.
dVm
dt

= I

This equation simply expresses conservation of charge, and We call the left handside the
capacitive current (Fig. 3.7A). It does not correspond to a physical movement of charges through
the membrane, but rather it simply expresses conservation of charge. It other words, it describes
the redistribution of charges around the membrane due to a transmembrane current. Note that
the capacitive current is positive when electrode current I flows inward. Therefore seen as a
current “flowing through the capacitor”, the capacitive current must be oriented outward, so
that outward current equals inward current (conservation of charge).

We can now understand the relaxation of membrane potential towards resting potential af-
ter an initial shock. Let I(Vm) be the current-voltage relationship of the membrane (directed
inward). Then after the initial shock, we must have:

C.
dVm
dt

= I(Vm)

By definition of the resting potential V0, we have I(V0) = 0. Around V0, we can linearize the
current-voltage relationship: I(Vm) ≈ g(V0 − Vm), where g is a conductance3. The terms slope

3To find the correct sign, remember that positive ions are pushed in the direction of the electrical field, therefore
a positive inward current should be seen when Vm is very negative.
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Figure 3.7: Capacitive current. A, The capacitive current Ic = CdVm/dt represents the redistri-
bution of charge around the membrane induced by the transmembrane current I. B, Exponential
decay of membrane potential after an initial electrical shock, with time constant τ .

conductance are sometimes used, as g corresponds to the slope of the current-voltage relationship
at V0. The corresponding resistance R = 1/g is often simply called the membrane resistance.
This linear current is sometimes called leak current. Note however that in the Hodgkin-Huxley
model (section 3.4), the current named “leak current” actually corresponds to the unspecific
current that remains when K+ and Na+ have been discounted.

With this linearization, we obtain the following linear differential equation:

C.
dVm
dt

= g(V0 − Vm)

This type of equation where the capacitive current is matched to the transmembrane currents
is called the membrane equation. It is more conveniently expressed in the following form:

τ
dVm
dt

= V0 − Vm

where τ = RC is called the membrane time constant. This equation predicts that Vm converges
to V0 (set dVm/dt = 0), and the convergence is exponential:

Vm(t) = V0 + (Vm(0)− V0) exp(−t/τ)

The membrane time constant τ can be understood in the following way: if a tangent to the curve
is drawn from the initial value after the shock, then the tangent intersects the axis Vm = V0 at
time τ (Fig. 3.7B).

Figure 3.8 shows the response of Paramecium to a hyperpolarizing current step (from Machemer
and Ogura (1979)). The linearized membrane equation then reads:

C
dVm
dt

= g(V0 − Vm) + I

where I is the injected current. This equation can be rewritten as above in a more convenient
way:

τ
dVm
dt

= V0 − Vm +RI

The membrane potential should then converge to V∞ = V0 + RI (set dVm/dt = 0). This
convergence is exponential with time constant τ :
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A

B

Figure 3.8: Passive response of Paramecium (Machemer and Ogura, 1979). A, Voltage response
to a hyperpolarizing current step. B, Normalized relative response in log scale in 4 conditions:
non-deciliated (A, B), deciliated (C) and reciliated (D).

Vm(t) = V∞ + (Vm(0)− V∞) exp(−t/τ)

If we choose the equilibrium value V∞ as the reference potential, that is, if we write ∆V (t) =
Vm(t)− V∞ (relative hyperpolarization), then we have:

∆V (t) = ∆V (0) exp(−t/τ)

This is perhaps the simplest way to express the solution of a first order linear differential
equation: the response relative to the equilibrium value decays exponentially. Figure 3.8B shows
∆V/∆Vmax in log scale. According to the formula above, we should see a straight line (oblique
dashed line). At time t = τ , we must have ∆V (t)/∆V (0) = 1/e. Therefore, we obtain an estimate
of τ from the intersection of the experimental curve with the horizontal line ∆V (t)/∆V (0) = 1/e
(dashed). For the first experimental curve (A), we find τ ≈ 35 ms. The membrane time constant
is roughly the same when cilia are removed with ethanol (curve (C)). Since the equilibrium value
of Vm is determined by the membrane resistance, the response to a current step can be used to
estimate both R and τ , or equivalently R and C. For Paramecium, these estimates are C ≈ 700
pF and R ≈ 65 MΩ. When cilia are removed, membrane capacitance is approximately halved,
which suggests that the membrane area of cilia is approximately half the total membrane area.
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Figure 3.9: Ionic movements and membrane permeability changes underlying the action potential
of the squid axon (adapted from (Hodgkin and Huxley, 1939)).

3.3 Active properties

3.3.1 General view

When the membrane potential is depolarized above a certain threshold, an action potential is
triggered (Fig. 3.7B). The electrophysiological studies of the 1940s and 1950s converged to the
following view of the squid axon’s action potential (Figure 3.9). In addition to the passive
properties of the membrane responsible for the resting potential, membrane permeability to Na+

and K+ changes with membrane potential. In modern terms, there are two types of voltage-
dependent ionic channels, specific respectively to Na+ and K+. Those channels are closed at
rest, but more and more of them open as membrane potential is increased, which increases
membrane permeability for specific ions. For example, when an excitable cell is depolarized
by an an electrode current, the Na+ channels first start to open. Because there is more Na+

outside than inside, Na+ ions enter the cell, which depolarizes the cell even more. Permeability
to Na+ increases, and therefore even more Na+ enters: there is a positive feedback, which causes
the explosive nature of the AP — we say that the phenomenon is regenerative. The membrane
potential then approaches the reversal potential of Na+. Then the Na+ channels inactivate, that
is, Na+ permeability decreases, also through a voltage-dependent process, but slower. Finally
K+ channels open through a slower voltage-dependent process, letting K+ flow outside the cell,
which hyperpolarizes (or “repolarizes”) the membrane, towards the reversal potential of K+.
As the membrane potential goes back to its resting value, permeability to the various ions also
returns to its resting state.

In Paramecium, the mechanism is similar but varies in detail (Fig. 3.10). The permeability of
ciliary membrane to Ca2+ increases with membrane potential (and ciliary membrane only (Ogura
and Takahashi, 1976)). Because there is much more Ca2+ outside than inside the cell, Ca2+ flow
in when the membrane is depolarized. As for the squid axon, this sets up a positive feedback loop,
which produces the explosive, regenerative nature of the action potential, but with a different
ionic basis. Calcium APs are seen in other excitable cells, for example the barnacle muscle
(Hagiwara et al., 1964), of which there is a classical abstract two-variable mathematical model,
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Figure 3.10: Ionic movements and membrane permeability changes underlying the action poten-
tial of Paramecium (adapted from (Naitoh and Eckert, 1973)).

the Morris-Lecar model (Morris and Lecar, 1981). Calcium channels also exist and are very
important in neurons, but they make a small contribution to the generation of action potentials
— rather, they are involved in intracellular signaling pathways, in particular activity-dependent
regulation.

Near the peak of the Paramecium’s AP, calcium channels also inactivate, i.e., they are not
permeable to Ca2+ anymore. However, a big difference with the squid axon’s AP is that Ca2+

channel inactivation is not directly voltage-dependent. Instead, it is the increase in intracellular
concentration of Ca2+ in the cilia (Brehm and Eckert, 1978) that blocks the channels. This
inactivation occurs indirectly through the binding of Ca2+ with calmodulin (Saimi and Kung,
1994), an ubiquitous protein that can be a part of the ionic channel, and is also found in neurons
(Peterson et al., 1999). The permeability to K+ also increases with membrane potential, but
more slowly. As in the squid axon, this increase is responsible for a fast repolarization of the
membrane. There are also K+ channels that are activated by intracellular calcium (Eckert and
Brehm, 1979).

There are substantial differences between Paramecium and the squid axon action potentials,
but the main ingredients are the same: 1) membrane currents caused by selective changes in
membrane permeability; 2) a positive feedback loop in the depolarization; 3) delayed inactivation
and repolarization. We now examine some of the empirical basis of this general view.

3.3.2 Membrane impedance during the action potential

As we have mentioned in chapter ??, one early theory about excitability, proposed by Bernstein,
was that the action potential is due to a non-selective increase in membrane permeability. To
test this hypothesis, Cole and Curtis measured the time course of the transverse impedance of
the membrane during the action potential. This was first performed in Nitella, an alga (Cole
and Curtis, 1938), and shortly after in the squid giant axon (Cole and Curtis, 1939). The
method uses two extracellular electrodes placed on opposite sides of the membrane (Fig. ??A
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Figure 3.11: Transverse impedance measurement of the squid axon. A, Two extracellular elec-
trodes are placed on opposite sides of the axon. B, Equivalent electrical circuit: sinusoidal
current I(t) is passed through one electrode and collected at the other; potential difference V (t)
is measured.

and 3.11A). An alternating current I(t) of frequency f is passed through one electrode and the
potential difference V (t) between the two electrodes is measured. When there is no current, there
should be no potential difference between the two electrodes. If the current I passed through the
electrodes is small enough, then the voltage V should depend linearly on I. Using the principle
of frequency decomposition, each frequency component of I(t) should be mapped to the same
frequency component for V (t), with a different amplitude and phase. In the complex domain,
we write:

I(t) = I0e
2iπft

and the voltage is then

V (t) = I0Z(f)e2iπft

where Z(f) is a complex number, depending on frequency, called the impedance. In practice, for
a sinusoidal current, one measures the gain G (ratio of amplitudes of V over I) and the phase
difference φ, and the impedance is Z(f) = Geiφ. This number can be related to the membrane
capacitance and the membrane resistance. Assume first that the current-voltage relationship of
the membrane is linear, with conductance g and resting potential V0, and note Vi the intracellular
potential and V1 and V2 the two electrode potentials. The current I passes through electrode 1,
enters the cell on one side, leaves the cell on the other side and passes through electrode 2. The
equality of the currents entering and exiting the cell means:

I(t) = −C d(Vi − V1)

dt
− g(Vi − V1 − V0) = C

d(Vi − V2)

dt
+ g(Vi − V2 − V0)

We then sum the two expressions and with V = V2 − V1 we obtain:

2I(t) = −C dV
dt
− gV

The notable fact is that the resting potential V0 disappears from the equation, so the response
is equivalent to that of an electrical circuit with a capacitance and resistance in parallel (Fig.
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3.11B). Let us calculate the impedance. We simply replace I(t) and V (t) by the complex expres-
sions above and after simplifications we obtain:

2 = (−2iπfC − g)Z(f)

Thus if we measure the impedance Z(f), then we can deduce the membrane capacitance and
conductance (specifically, g = Re(−2/Z(f))). This method can be applied if the non-stationary
case of an action potential. If at a given instant t the instantaneous current-voltage relationship
of the membrane is linear (as in the Hodgkin-Huxley model, see section 3.4), then we can simply
replace g by g(t) and V0 by V0(t). We then apply the measurement on a short time window where
g(t) and V0(t) do not change much and use a high frequency current I(t). We then obtain g(t),
the total membrane conductance at that particular moment — we are assuming that the current
is small enough so that it does not perturb the cell. Figure ??A (right) shows the time course of
the membrane conductance (fast oscillating trace) superimposed on the action potential of the
squid axon: the membrane conductance increases dramatically during the action potential. This
is in line with Bernstein’s theory, according to which membrane permeability increases during
the action potential.

Nonlinear current-voltage relationships

As we have mentioned several times, the current-voltage relationship of the membrane is often
not linear. Nevertheless, the measurement is still meaningful in this case. Let us consider that
the membrane current is f(Vm, t), a function of both membrane potential and time. Then the
equality of currents entering and leaving the cell means:

I(t) = −C d(Vi − V1)

dt
− f(Vi − V1, t) = C

d(Vi − V2)

dt
+ f(Vi − V2, t)

If the current I is small, then so is V = V2−V1. Therefore, adding the two expressions gives:

2I(t) ≈ −C dV
dt
− ∂f

∂V
(Vi − V1, t)V

The quantity ∂f/∂V is called the slope conductance, it is the local membrane conductance
at particular the membrane potential and time. This is the quantity measured by the transverse
impedance measurement technique. It quantifies the effect of a small perturbation of membrane
potential on membrane current. In the case of the GHK current model, for example, it is
proportional to membrane permeability, assuming ionic concentrations are constant.

3.3.3 Ionic basis of the action potential

The measurements of Cole and Curtis showed that membrane conductance increases during the
action potential, in agreement with Bernstein’s theory. Shortly after these studies, in 1939,
Hodgkin and Huxley made the first intracellular recording of the squid axon action potential,
which clearly demonstrated that the membrane potential transiently becomes positive (Hodgkin
and Huxley, 1939) (Fig. ??C). This observation contradicts Bernstein’s hypothesis that the
action potential is due to a non-specific increase in membrane permeability, because this would
result in an action potential peaking near 0 mV. A different theory emerged: the rising phase of
the AP is due to an increase in Na+ permeability, while the falling phase is due to an increase
in K+ permeability. The basic observations that supported this theory, reviewed in (Hodgkin,
1951), are as follows:
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• Ionic fluxes for specific species can be measured with radioactive tracers. These measure-
ments revealed an influx of Na+ and outflux of K+ during electrical activity. Today similar
measurements can be done using with fluorescent probes4, for example for Na+, which
show increases in intracellular Na+ concentration associated with APs (Kole et al., 2008;
Fleidervish et al., 2010; Baranauskas et al., 2013). A quantitative argument can be made:
the amount of Na+ entering the cell during an AP should be at least as large as the amount
necessary to charge the membrane capacitance towards the peak of the AP5. This amount
of charge can be calculated as explained in section ??. Measurements of Na+ flux with
radioactive tracers showed indeed that the influx was 2-3 times larger than the minimum
value. Measurements of K+ flux showed that the outflux of K+ was similar to the influx
of Na+, as expected from electroneutrality.

• Manipulation of Na+ concentration: when sodium is removed from the extracellular medium,
action potentials disappear. This observation was in fact made very early by Overton
(1902) in frog muscle, and then repeated in other preparations including the squid axon.
In addition, when extracellular Na+ concentration is decreased, the peak value of the ac-
tion potential decreases (Fig. 3.12A). At high concentration, the variation agrees with the
Nernst potential of Na+ (solid line).

• The duration of the action potential is very short, on the order of 1 ms (see Fig. ??C). If
the falling phase were due to only to the membrane permeability returning to its resting
state, then we would expect the membrane potential to decay more or less exponentially
with the same time constant as in response to small shocks near rest (Fig. 3.7). The fact
that the membrane potential returns to rest very quickly indicates that K+ permeability
is much higher during the falling phase than at rest.

• After the falling phase, the membrane potential goes beyond the resting potential, towards
the Nernst potential of K+ (Fig. ??C). Again this indicates strong membrane permeability
to K+.

Similar experimental observations have been done in vertebrate neurons (see e.g. Fig. 3.12B).
In Paramecium, the membrane potential also changes sign at the peak of the action potential
(Fig. 3.10), and the peak value varies with extracellular Ca2+ concentration, while extracellular
K+ concentration has small impact (Fig. 3.12C,D). On Fig. 3.10, it can also be noted that
the falling phase is faster than expected from passive properties (Fig. 3.8), which indicates that
K+ permeability increases after the action potential peak. In Paramecium, action potentials are
graded: their amplitude depends on the stimulating current. Graded APs are converted to all-or-
none APs when calcium is partly replaced by barium (Ba2+) in the extracellular solution (Naitoh
and Eckert, 1968), or when EGTA is injected intracellularly. Calcium channels are permeable to
barium, which competes with Ca2+, while EGTA binds with calcium and thus lowers intracellular
concentration of Ca2+ (Brehm et al., 1978). These and other experimental observations have led
to the following conclusions: Ca2+ concentration increases in the cilia during the rising phase of
the AP, and this increase inactivates Ca2+ channels (Eckert and Chad, 1984) and activates K+

channels; there are also K+ channels that are activated by depolarization as in the squid axon.
Thus the mechanism of repolarization is quite different in the squid axon and in Paramecium,
since in Paramecium it is mostly intracellular Ca2+ and not membrane potential that controls
it.

4The general principle is that the fluorescent properties of the probe depends on whether it is bound with the
target intracellular ion (ion specificity depends on the probe), so that the fluorescent signal can be related to the
ion concentration.

5It could be larger since Na+ influx could occur concurrently with K+ outflux.



18 CHAPTER 3. ACTION POTENTIAL OF AN ISOPOTENTIAL MEMBRANE
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Figure 3.12: Effect of ionic concentrations on action potentials. A, Resting potential (1, top)
and peak of action potential (2, bottom) as a function of extracellular Na+ concentration in the
squid axon (Hodgkin, 1951). The difference between extracellular and intracellular potential is
plotted (i.e., −Vm). B, Same as A in frog myelinated fiber. C, Same as A in Paramecium, except
extracellular Ca2+ concentration is varied (Naitoh et al., 1972). The convention for potential is
reversed (Vm is plotted). D, Same as C except extracellular K+ concentration is varied.
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Figure 3.13: Membrane current of the squid axon recorded in voltage-clamp (adapted from
Hodgkin et al. (1952)). A, Currents recorded in voltage-clamp with a step depolarization to the
value of Vm indicated on the right, relative to resting potential. Positive current means inward.
Capacitive transients were subtracted. B, Current vs. −Vm measured 0.63 ms after the voltage
step (open circles) and in steady-state (filled circles).

3.3.4 Dynamics of membrane currents

Dynamics of the total membrane current

As we have pointed out in section 3.1, the key technique to investigate the dynamics of membrane
permeability is voltage-clamp: the current required to maintain the membrane potential at a
fixed value is measured. There are several reasons. The first is technical: the capacitive current
C.dVm/dt is null when the membrane potential is constant and therefore the electrode current
matches the membrane current. But this is a relatively minor issue because the capacitive current
could in principle be calculated and subtracted from the measurement. The second reason is that
when the membrane potential is constant, the temporal variations of the membrane current reflect
changes in permeability, if we assume that ionic concentrations do not vary significantly. This
is true both of the linear (ohmic) model of membrane currents and of GHK theory (section ??).
The third reason is that one needs to control the membrane potential in order to investigate the
voltage-dependent properties of membrane permeability.

Results of a voltage-clamp experiment in the squid axon are shown on Fig. 3.13A, where
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A B

Figure 3.14: Membrane current of Paramecium recorded in voltage-clamp (Eckert and Brehm,
1979)). A, Currents recorded in voltage-clamp with a step depolarization. Negative current
means inward. Capacitive transient are seen at the beginning and end of the voltage step
(arrows). B, Current vs. Vm measured at the peak (open circles) and 30 ms after the voltage
step (filled circles) (note the opposite convention for both voltage and current compared to Fig.
3.13B).
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voltage is instantaneously switched from resting potential to a target value. In the hyperpolarized
range, the current switches to a different value and stays constant. When the target voltage is 20
mV above resting potential or more, the current increases then decreases and changes sign: first
it is inward, consistent with positive ions entering the cell (possibly Na+), then it is outward,
consistent with positive ions leaving the cell (possibly K+). At very depolarized voltages, above
ENa, the current is outward. On Figure 3.13B, we observe that the early current (here at 0.63
ms) is non-monotonous and reverses around 100 mV. This suggests that the early current is due
to Na+ permeability increasing with membrane potential (note that −Vm is on the horizontal
axis). The late current (steady-state value) reverses at the resting potential and the voltage-
dependence is much steeper at depolarized voltages. This suggests that the late current is due to
K+ permeability increasing with membrane potential, but more slowly than Na+ permeability.
Similar observations can be made on Paramecium (Fig. 3.14; note the opposite conventions for
current and voltage).

Separation of ionic currents in the squid axon

To understand these currents in terms of changes of Na+ and K+ permeabilities (or Ca2+ and
K+ for Paramecium), one needs to isolate the currents carried by each of these ion species. The
method used by Hodgkin and Huxley was to measure the membrane current in voltage-clamp with
different extracellular Na+ concentrations. To that effect, sodium was partly or entirely replaced
by choline in the extracellular medium, to which the membrane is not permeable (Hodgkin and
Huxley, 1952c). Entirely replacing sodium by choline makes the axon completely inexcitable
with almost no change in the resting potential.

Let us consider two extracellular solutions with different Na+ concentration. Assuming the
K+ current is not affected Na+ concentration (which is approximately but not exactly true), the
currents recorded in voltage-clamp are I = INa + IK and I ′ = I ′Na + IK , that is, only the Na+

current should differ between the two traces. Therefore the difference I − I ′ = INa− I ′Na is only
due to the Na+ current. The Na+ current is the time-dependent permeability of the membrane
times a factor that depends on membrane potential and ionic concentrations (e.g. in the GHK
model, section ??). Since the membrane potential is fixed, it follows that the two currents INa
and I ′Na are proportional: INa = kI ′Na. Therefore, I − I ′ = (1 − k)INa. The proportionality
constant k can be deduced by assuming that initially I ≈ INa and I ′ ≈ I ′Na. We can then deduce
both INa and IK .

An example is shown on Figure 3.15. With this separation technique, we observe that when
the axon is depolarized (here by 56 mV above rest), the Na current first increases (inward),
reaches a peak, then decreases and returns near its initial value (Fig. 3.15B). As pointed out
above, this means that the membrane first becomes permeable to Na+, then impermeable again.
The first process is called activation and the second inactivation. The K+ current does not
show inactivation (Fig. 3.15c): an outward current develops and converges to a steady-state.
We also note that the activation of the K+ current is slower than that of the Na+ current. The
inactivation of the Na+ current is voltage-dependent. To demonstrate it, Hodgkin and Huxley
used more complex voltage-clamp protocols, where the membrane potential is first clamped to
a small depolarized value V1 for a variable duration, then clamped to a larger depolarized value
V2 (Fig. 3.16A). With V1 = 8 mV and V2 = 44 mV above resting potential, the inward current
is only seen in response to the second voltage step, but its amplitude depends on the duration
of the first step — the longer the first step, the smaller the inward current in response to the
second step. Since there is no measurable current in response to the first step, the inactivation is
unlikely due to ionic movements but rather voltage-dependent. The voltage-dependence can be
measured by varying the value V1: the relative amplitude of the inward current decreases as V1
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1 ms

Figure 3.15: Separation of membrane currents in the squid axon (Hodgkin and Huxley, 1952c).
The membrane potential is stepped from resting potential to 56 mV above it, in two experimental
configurations: in sea water (Ii, INa, IK), and in sea water with lowered sodium concentration
(10%). (a) Total membrane current (I > 0 means inward current). (b) Sodium current. (c)
Potassium current.

is increased (Fig. 3.16B; remember potential is given with the inverse convention extracellular
minus intracellular potential = −Vm).

To interpret these currents in terms of permeability changes, Hodgkin and Huxley define the
chord conductance as the current divided by the driving force. For example, for Na+, the chord
conductance is INa/(Vm−ENa). This is a definition that can always be made, independently of
whether the instantaneous relation between membrane current and driving force is linear — but
of course, it is more meaningful in that case, which turns out to be approximately the case in the
squid axon in normal physiological conditions. Figure 3.17 shows the dynamics of Na+ and K+

conductances when the axon is depolarized to various membrane potential values. The general
time course of the conductances is of course similar as that of the ionic currents, but additionally
we note that the maximum conductance increases monotonously with membrane potential, for
both Na+ and K+.

These experimental observations form the basis of the Hodgkin-Huxley model of the action
potential of the squid axon (section 3.4). Separation of ionic currents is now typically done in
a different way, using pharmacological blockers. These are molecules that bind selectively to
certain ionic channels and block them. For example, tetrodoxin (TTX) is a toxin produced by
some fish, which blocks a large class of Na channels when applied extracellularly (Narahashi et al.,
1964). There are many other blockers, for different types of ionic channels, which bind either
on the extracellular or intracellular side of the membrane. The effect of blocking Na channels
is similar to removing Na+ is the extracellular medium, but not exactly equivalent, because the
ionic selectivity of channels is not perfect (for example, some calcium can pass through Na+

channels (Baker et al., 1971)). This topic will be discussed further when we introduce ionic
channels in chapter ??.

Separation of ionic currents in Paramecium

In Paramecium, the separation technique used by Hodgkin and Huxley is unfortunately not
effective. In addition to the dependence of surface charges on extracellular Ca2+ concentration
that we have previously discussed (section 3.1), part of the K+ current is activated not by voltage
but by intracellular Ca2+. Besides, the Ca2+ current is inactivated not by voltage but also by
intracellular Ca2+. Therefore, when extracellular Ca2+ concentration is manipulated, the Ca2+

current changes in a nonlinear way (because inactivation is modified) and the K+ current is also
affected.

Therefore, alternative techniques have been used in Paramecium. First, cesium (Cs) and
tetraethylammonium (TEA) block a large class of K+ channels (mostly when intracellular in-
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Figure 3.16: Inactivation of the Na+ current in squid axon (Hodgkin and Huxley, 1952d). A,
Two-step voltage-clamp protocol: membrane potential is first depolarized by V1 = 8 mV for
variable duration, then by 44 mV above resting potential. Note that potentials are given with
the convention V = Ve−Vi = −Vm. B, Relative amplitude of the inward current for initial steps
of long duration, as a function of V1.
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Figure 3.17: Ionic conductances of the squid axon (Hodgkin and Huxley, 1952c). Dynamics of
Na+ (a) and K+ (b) chord conductances when the membrane potential is displaced from rest to
a depolarized value (in mV on the left, relative to resting potential).
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Figure 3.18: Effect of deciliation on the membrane current of Paramecium (Eckert and Brehm,
1979). A, Current-clamp response to a current pulse just after deciliation (top) and several
hours after deciliation (below). B, Membrane current measured in voltage-clamp in control
(disks) and deciliated (triangles) Paramecium as a function of membrane potential (relative to
resting potential). For the control Paramecium, early and late (30 ms) currents are shown (they
are identical for the deciliated Paramecium).

jected), and their application nearly suppresses the late outward current but not the early inward
current shown in Fig. 3.14B (Brehm et al., 1978). Calcium channels can be blocked by W-7
(Hennessey and Kung, 1984). Another method uses physical separation of channels. As discussed
in section 3.2.2, ionic channels are spatially segregated, with Ca2+ and K+ channels responsible
for the action potential located in the cilia. Figure 3.18 shows the effect of deciliation on voltage
responses to current pulses (A) and on current measured in voltage-clamp (B). Both the early
inward current and the late outward current disappear when cilia are removed. After a few
hours, the cilia grow back and the cell becomes excitable again, which makes Paramecium an
interesting model of development of excitability.

Deciliation does not allow fine separation of ionic currents. Another approach is genetic
manipulation. It was used before Ca+2 channel blockers were identified (Hennessey and Kung,
1984). Paramecium is easy to culture and because there is a direct relationship between electrical
activity and behavior, various types of mutants can be isolated on the basis of abnormal behavior,
in direct relation with defects in specific current types (Saimi and Kung, 1987). For example,
Pawn mutants6 do not show the typical avoiding reaction, and only swim in straight lines or
stop. Electrically, they are not excitable: there is no action potential (Kung and Eckert, 1972)
(Fig. 3.19A). This defect can be traced back to a malfunction of calcium channels. When the
membrane current is measured in voltage-clamp, it appears that the late (steady-state) current
is the same in wild type and mutant Paramecium, but the early inward current is only seen in
the wild type (Oertel et al., 1977) (Fig. 3.19B). One can then calculate the difference between
membrane currents in wild type Paramecium and Pawn (Fig. 3.19C), which can be shown to

6named after the chess piece because they cannot swim backward.
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be indeed carried by Ca2+. It then appears that, as in the squid axon, this inward current
inactivates rapidly (here a few ms), while the outward current (carried by K+) does not. The
inactivation is apparently nearly complete, but not entirely because ciliary reversal is observed
during sustained depolarization. Using two voltage pulses separated by various durations, it can
be shown with this separation technique that inactivation is removed in about 80 ms (Oertel
et al., 1977). However, compared to the use of drugs or manipulation of ionic concentrations,
genetic separation of ionic currents is based on the comparison between different cells, which is
an important limitation since cells vary in the expression and properties of ionic channels.

Unlike the squid axon, inactivation of the inward current of Paramecium is not voltage-
dependent but calcium-dependent (Brehm and Eckert, 1978; Brehm et al., 1978, 1980; Eckert
and Chad, 1984). This can be demonstrated by different means reviewed in (Eckert and Chad,
1984). For example, when extracellular Ca2+ is partially replaced by barium (Ba2+), an early
inward current can still be measured upon depolarization in voltage-clamp, but its decay is
much slower (Brehm and Eckert, 1978). In current-clamp, this manipulation makes Paramecium
produce all-or-none action potentials, with duration increasing with Ba2+ concentration (Naitoh
and Eckert, 1968). This is consistent with the calcium channel being also permeable to Ba2+, and
inactivation due to the intracellular increase in Ca2+. When the membrane current is measured
in voltage-clamp in response to two voltage pulses separated by a few tens of ms, the peak
inward current is smaller in response to the second pulse, and its relative amplitude decreases
as extracellular Ca2+ concentration increases (Brehm et al., 1980). Finally, a calcium chelator
called EGTA can be injected into the cell. It binds to Ca2+ and thereby reduces its intracellular
concentration. When this is done in Paramecium, inactivation is much reduced, as measured by
the double-pulse method (Brehm et al., 1980).

As shown in Fig. 3.19B, the outward current measured at 25 ms is essentially the same in
wild-type Paramecium and in the Pawn mutant with defective Ca2+ channels. This and other
observations indicate that the outward current measured on this time scale is not triggered by
the entry of Ca2+ but by depolarization, as in the squid axon. On longer time scales (100-1000
ms), another type of K+ current develops, activated by intracellular Ca2+, but it is not involved
in generating of the action potential (Oertel et al., 1977; Satow and Kung, 1976; Satow, 1978;
Satow and Kung, 1980).

3.3.5 Refractoriness

Once an excitable cell has produced an action potential, it is more difficult to excite again
for a short period of time. That is, a stronger stimulus is required to make the cell fire another
action potential. This is called the refractory period. One may distinguish the absolute refractory
period, when the cell is not excitable at all, and the relative refractory period, when it is excitable
with a stronger stimulus. There are two causes of refractoriness: the inward current (Na+ for the
squid axon, Ca2+ for Paramecium) inactivates and therefore is smaller when a second stimulus
is applied; an outward current (K+) develops when a first stimulus is applied, which reduces the
effect of a second stimulus and competes with the inward current.

An example in shown in Figure 3.20A in Paramecium. When the cell is stimulated by two
current pulses separated by several hundred ms, the same action potential is produced. When
the interpulse interval is reduced, a smaller action potential is seen; if it is reduced further,
the regenerative component disappears and only a passive response to the stimulus is seen.
The reduction in the depolarization by the stimulus (non-regenerative) is due to the outward
current, but the complete loss of excitability is due to the inactivation of the inward current
(Na+ or Ca2+). We have seen that inactivation is responsible for the decay of the inward current
underlying the action potential, as seen in voltage-clamp (e.g. Fig. 3.17a). Both in Paramecium
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Figure 3.19: Genetic separation of ionic currents in Paramecium. A, Response to current steps
in wild-type Paramecium and Pawn mutant (Kung and Eckert, 1972). B, Early current in wild
type Paramecium (squares) vs. membrane potential, and late current wild type (triangles) and
mutant Paramecium (disks) (Oertel et al., 1977). C, Membrane current measured in voltage-
clamp with a 20 mV depolarization in wild type (top) and mutant (middle) Paramecium, and
difference between the two current waveforms (bottom) (Oertel et al., 1977).
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Figure 3.20: Refractoriness of excitable cells. A, Two short current pulses (2 ms) are injected in
Paramecium with varying interpulse interval (Naitoh et al., 1972). Membrane potential (bottom)
and its derivative (top) are shown. The arrows point a second peak in dVm/dt corresponding to
the inward Ca2+ current. B, Current recorded in voltage-clamp for two 44 mV voltage pulses
with varying interpulse interval (Hodgkin and Huxley, 1952d); inward current (Na+) is positive
(note that there are also capacitive transients). Top trace: response to a single pulse. C, Relative
peak current in the second pulse as a function of interpulse interval.

and in the squid axon, inactivation actually persists much longer than the action potential. This
is shown for the squid axon in Fig. 3.20B, where the current is recorded in voltage-clamp in
response to two 44 mV voltage pulses lasting about 2 ms (Hodgkin and Huxley, 1952d). Each
voltage pulse triggers an inward current, but the amplitude of the current in response to the
second pulse is reduced if the interval between two pulses is shorter than about 20 ms — much
longer than the duration of the action potential. Figure 3.20C shows that the inward current is
reduced by about 60% after an action potential, and then recovers approximately exponentially
with a time constant of about 12 ms.

3.4 The Hodgkin-Huxley model

The series of experiments done by Hodgkin and Huxley on the space-clamped squid axon culmi-
nated in the design of a quantitative model of the action potential, now called the Hodgkin-Huxley
model (Hodgkin and Huxley, 1952a). There is one quantitative model of Paramecium action po-
tential that reproduces some of its qualitative features (Hook and Hildebrand, 1979), but it is
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less tightly bound to experimental data. The complete model is presented in section 3.4.4, but
as we also want to explain how the model was built, we will introduce its ingredients one by one,
together with the corresponding hypotheses and experiments.

3.4.1 The equivalent circuit

First, the membrane is considered isopotential, that is, the membrane potential Vm is the same
everywhere. This assumption does not hold in any neuron, except possibly in developing neurons
that do not have neurites7. As discussed in section 3.1, the assumption holds for the experiments
of Hodgkin and Huxley because a metal wire is inserted inside the axon, but this is not the
physiological condition (unlike in Paramecium). The Hodgkin-Huxley model is thus a model of
the action potential of the space-clamped squid giant axon.

Second, the total membrane current is modelled as a sum of a Na+ current INa, a K+ current
IK , a non-specific “leak” current IL carried by Cl− and other ions (i.e., what remains when
the two other ionic currents have been removed), and a capacitive current C.dVm/dt. At first
sight this may seem obvious, but it is a hypothesis that the currents carried by different ionic
species are independent. It is a logical assumption to make if the Na+ and K+ currents are
thought to be carried by two physically separate types of ionic channels, each being specific
for only one ionic species, but of course this was only a hypothesis. The independence of ionic
currents was consistent with the experiments where ionic concentrations are manipulated. In an
experiment where a current I is passed through an intracellular electrode, conservation of charge
then implies:

C
dVm
dt

+ INa + IK + IL = I

This equation is called the membrane equation. Here we have adopted the following convention:
for the electrode current, I > 0 means positive current is injected into the cell (inward); for
the ionic currents, INa > 0 means current is leaving the cell (outward). This is the modern
convention, but Hodgkin and Huxley used the opposite convention. This equation corresponds
to an equivalent electrical circuit with different elements in parallel: a capacitor and several
sources of current.

3.4.2 The linear model of currents

In section 3.3.4, we have seen that Hodgkin and Huxley introduced the conductance gS of the
membrane for a given ion species S, defined by the formula

IS = gS(Vm − ES)

where IS is the current (e.g. Na+ current) and ES is the reversal potential for S. At this
point, this is just a definition, called the chord conductance, which can be used whether the
current-voltage relationship of the membrane is linear or not. For example, one could define
the chord conductance for a membrane with fixed permeability governed by GHK theory, where
the current-voltage relation is nonlinear (section ??). In that case, the conductance would
be a function of permeability but also of membrane potential, which makes the definition less
useful. The basic postulate of the Hodgkin-Huxley model is that chord conductances depend
only on permeability and not on instantaneous voltage. As we have seen in the previous section,
membrane permeability can change with membrane potential, but not instantaneously. Therefore

7Even in that case, there can be spatial gradients of membrane potential across the cell, i.e., electrical fields
within the cell, see for example De Loof (1986) and Levin (2014).
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this linear or ohmic model consists in separating the ionic current in two factors, one called the
driving force (Vm − ES), which is a linear instantaneous function of Vm, and another one, the
conductance gS , which may vary with Vm but not instantaneously.

To test this hypothesis experimentally is straightforward: activate the current with a first
voltage-clamp step, then instantaneously move Vm to a different value with a second voltage-
clamp step. The current recorded at the beginning of the second step should depend linearly
on the imposed voltage. This prediction turns out to be correct for the squid axon, as shown
on Figure 3.21 (Hodgkin and Huxley, 1952b). As we have seen before, the peak inward current
elicited by a depolarizing voltage step is a nonlinear function of voltage (current I1, nonlinear
curve with crosses). In contrast, the current at the start of a second voltage step depends
linearly on voltage, as predicted by the ohmic model (current I2, linear curve with open disks).
The same type of experiments, but with extracellular Na+ replaced by choline, showed that the
K+ current also follows the ohmic model. However, later experimental studies showed that the
current-voltage relationship of the K+ current is better explained by GHK theory (Clay, 1991,
2005). In some cases such as the Ranvier node of frog myelinated fibers, it was shown that the
current-voltage relation of the Na current is also better captured by the GHK current equation
(Dodge and Frankenhaeuser, 1959); in the squid axon, the Na current is also nonlinear in low Na
water (Hodgkin and Huxley, 1952b). These empirical tests are in fact rarely done and it is often
simply assumed that currents follow the ohmic model. A technical difficulty with Na+ currents is
that they have fast kinetics, and the initial response to a voltage step may be unreliable because
of the capacitive transient (as seen e.g. on Fig. 3.20B) and incomplete clamp by the amplifier
feedback system.

The ohmic model implies that the membrane current associated to ion species S is equivalent
to the current of an electrical circuit composed of a battery ES in series with a resistor of
conductance gS (or resistance RS = 1/gS) (Figure 3.22). It should be kept in mind that, even
when the ohmic model correctly captures the current-voltage characteristics of the ionic current,
the conductance still depends on ionic concentrations (and temperature). These concentrations
are considered fixed in the Hodgkin-Huxley model, which is justified by the fact that axon
diameter is very large (up to 1 mm), so that changes in concentrations due to electrical activity
should be very small (see section ??).

The membrane equation then becomes:

C
dVm
dt

= gNa(ENa − Vm) + gK(EK − Vm) + gL(EL − Vm) + I (3.1)

3.4.3 Conductance models

The K+ conductance model

The leak conductance gL is considered constant. For the K+ and Na+ currents, models of
the conductances are fitted to voltage-clamp recordings. An example is shown on Fig. for a
25 mV depolarization (A) and the return to (B) resting potential. The conductance increases
continuously in some characteristic time (a couple of ms) to a steady-state value, then decreases
back to the resting value. The simplest phenomenological model would be an exponential model,
that is, where the conductance gK follows a first-order linear differential equation:

τ
dgK
dt

= g∞K − gK

This works well for the deactivation protocol (B), i.e., when the membrane potential is moved
back to resting potential, but for the activation protocol (A), it appears that there is a delay in the
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Figure 3.21: Linearity of the Na+ current-voltage relationship in squid axon, measured in voltage-
clamp (Hodgkin and Huxley, 1952b). The nonlinear curve (crosses) represents the peak inward
current I1 measured in a 29 mV depolarizing step (top right) as a function of voltage V1. The
linear curve (open disks) represents the I2 at the beginning of a second voltage step V2 (top left).
The convention is I > 0 for inward current and V = −Vm.

I

Vm(t)

INa IK IL

gL

EL

gK

EK

gNa

ENa

intra

extra

C

Figure 3.22: Equivalent circuit of the Hodgkin-Huxley model. Each ionic current corresponds to
a battery ES in series with a resistor of variable conductance gS .
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Figure 3.23: Fitting the K+ conductance of the squid axon (Hodgkin and Huxley, 1952a). A, K+

conductance measured in voltage-clamp for a 25 mV depolarization and back to resting potential.
The curves are fits from the Hodgkin-Huxley model. B, Opening (αn) and closing (βn) rates as
a function of voltage (convention: V = −Vm). The data are collected for different axons and
adjusted for temperature.

increase of the conductance, which cannot be obtained with an exponential model. Hodgkin and
Huxley then proposed a simple modification, where gK is proportional to a power of a variable
obeying a first-order equation, and found out that an exponent of 4 gave a good empirical fit8.
The model is then:

gK = ḡKn
4 (3.2)

τn
dn

dt
= n∞ − n

where ḡK is the maximum conductance and n is a variable between 0 and 1, called activation
variable; τn is the time constant and n∞ is the steady-state value. The continuous curves in Fig.
3.23A are the fits of this model to the experimental data.

This model can be given the following physical interpretation, which will be elaborated in
chapter ??. K+ ions can pass through specific ionic channels in the membrane. Each of these
channel is made of 4 identical and independent molecules, which can be in two configurations,
open and closed, and the channel is open when the 4 molecules are open. A molecule switches
stochastically between these two configurations with a transition rate that depends on mem-
brane potential, which can be explained by postulating that the molecules are charged. This is
summarized by the following kinetic scheme:

C
αn

βn
O

where C and O represent the closed and open state of a molecule, respectively, αn is the opening
rate and βn is the closing rate (in s−1). This notation means that a closed molecule has probability
αn.dt of opening in time dt, and an open molecule has probability βn.dt of closing. Then the
probability n that the molecule is in the open state follows the following equation:

dn

dt
= αn(1− n)− βnn (3.3)

8Not the best one, however, as a sixth exponent gave a better fit but was considered not worth the extra
computing cost, given the machines of the time.
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Indeed, the probability n(t + dt) that the molecule will be in the open state at time t + dt
is the probability 1 − n(t) that it was closed at time t times the probability that it opens in
time dt (αn.dt), minus the probability n(t) that it was open times the probability that it closes
(βn.dt). Opening and closing rates can be given an interpretation in terms of the initial currents
measured in the activation and deactivation protocols (Fig. 3.23A). If the channels are initially
closed (n = 0) and the membrane potential is clamped to a depolarized value, then initially (small
t) n(t) ≈ αnt and therefore gK ≈ ḡK(αnt)

4. The fourth exponent accounts for the “delay” in the
current seen in Fig. 3.23A (left), which is scaled by the activation rate αn. If the channels are
initially open (n = 1) and the membrane potential is clamped to resting potential, then initially
n(t) ≈ 1 − βnt and therefore gK ≈ ḡK(1 − βnt)

4 ≈ ḡK(1 − 4βnt) (Taylor expansion). Thus
there is no delay in deactivation, as seen in Fig. 3.23A (right), and the initial rate of decay is
proportional to the closing rate βn.

This kinetic scheme is equivalent to the first-order linear equation above, where

n∞ =
αn

αn + βn

τn =
1

αn + βn

The fact that the equations provide a good fit to the experimental data of course does not
prove that this physical interpretation is correct. In particular, nothing in the experiments of
Hodgkin and Huxley indicated the binary and stochastic nature of channel opening (see chapter
??). In fact, Hodgkin and Huxley did not use term channel as it was not at all obvious that ions
passed through channels; another hypothesis was that ions cross the membrane by interacting
with carriers, an interpretation also consistent with the model (Armstrong, 2007). The Hodgkin-
Huxley model is thus better seen as a phenomenological model of membrane permeability rather
than a model of ionic channels.

Values of the rates αn and βn can then be obtained by fitting conductance measurements
from voltage-clamp experiments as shown in Fig. 3.23A, for different values of the membrane
potential Vm. Results over a large potential range are shown on Fig. 3.23B, with data collected
on a number of axons. These axons were recorded at different temperatures, and temperature
has a strong impact on the currents: essentially, it appears that the effect of temperature change
is to compress or expand the currents in the time domain9 (Hodgkin et al., 1952). In the model,
this corresponds to scaling the rates αn and βn by a constant factor. Empirically, Hodgkin,
Huxley and Katz found that the scaling factor to apply is:

Q
∆T
10
10

where ∆T is the temperature change in degrees (Kelvin or Celsius) and Q10 ≈ 3 in this case.
With this correction, there is a clear relation between rates and voltage. These relations were
fitted by the following formulae:

αn(Vm) = 0.01
−Vm + 10

exp((−Vm + 10)/10)− 1
(3.4)

βn(Vm) = 0.125 exp(−Vm/80) (3.5)

where Vm is in mV and rates are in ms−1. These are empirical formulae, chosen as the simplest
mathematical expressions that fit the data; they have no strong biophysical basis. It should

9This is of course a rough approximation. Biophysics suggests that the amplitude of the currents should also
depend on temperature (see section ??).
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Figure 3.24: The steady-state K+ conductance of the squid axon. A, Maximum K+ conduc-
tance in log scale vs. voltage (V = −Vm) (Hodgkin and Huxley, 1952c). B, Steady-state value
n∞(V ), with the continuous curve representing the Hodgkin-Huxley model of the K+ conduc-
tance (Hodgkin and Huxley, 1952a).

be clear from Figure 3.23B that other choices could have been made, especially for βn. In
particular, an alternative approach would be to fit simple mathematical expressions to n∞ and
τn, rather than to αn and βn. In electrophysiogical studies, the equilibrium value of the relative
conductance (gK/ḡK), which in the Hodgkin-Huxley model corresponds to n4∞(Vm), is typically
fitted to a Boltzmann function of Vm:

n4∞(Vm) =
1

1 + e(V1/2−Vm)/k

where V1/2 is called the half-activation voltage (value at which n∞ = 1/2) and k is called the
Boltzmann factor or slope factor. This function has similar shape than the function obtained
with equations (3.4) and (3.5) (sigmoidal) but is not identical. In the hyperpolarized range (most
channels are closed), this expression predicts:

n4∞(Vm) ∝ eVm/k

Empirically, Hodgkin and Huxley found indeed an exponential relationship with slope k ≈ 5 mV
(Fig. 3.24A). If n∞(Vm) is calculated from equations (3.4) and (3.5), one finds

n4∞(Vm) ∝ −V 4
me

4Vm/k
′

with k′ ≈ 9 mV, i.e., k′/4 ≈ 2.25, a different relationship. There is indeed some (small) discrep-
ancy between the experimental data for n∞ and the Hodgkin-Huxley model (Fig. 3.23B).

The Na+ conductance model

The timecourse of the Na+ conductance cannot be explained by a first-order linear differential
equation, because it is not monotonous (Fig. 3.17A). Therefore Hodkgin and Huxley proposed
to model it with two first-order equations, as follows:
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gNa = ḡNam
3h (3.6)

dm

dt
= αm(1−m)− βmm (3.7)

dh

dt
= αh(1− h)− βhh (3.8)

Equilibrium values (m∞ and h∞) and time constants (τm and τh) are defined as previously
as functions of α and β. Another option could have been to model the Na+ conductance as
a second-order equation, but this option was considered simpler. The third exponent (m3) is
empirical. This model can be interpreted as follows: the Na+ channel (in modern terms) is
open when 3 identical molecules are in the same configuration, and when it is not blocked by an
additional molecule. We shall call the first kind of molecules the activating molecules and the
blocking one the inactivating molecule. Then m is the probability that an activating molecule
is in the open state and h is the probability that an inactivating molecule is in the non-blocking
state. Again this is just a possible interpretation of the empirical equations, that nothing in the
experiments specifically supports — except that the time course of the conductance is well fitted
by the model.

In principle, this model could be fitted to current waveforms as for the K+ conductance.
However, in part for technical reasons, Hodgkin and Huxley used a different set of experiments
to constrain the inactivation parameters, except for large depolarizations where they assumed
h∞ = 1. Specifically, they used the two-step protocol where the peak current in response to
a second voltage step is measured (Fig. 3.16). In that protocol, a first step is applied with
voltage V1 and long duration. At the end of the step, according to the model, m = m∞(V1) and
h = h∞(V1). If V1 is small enough, then we can assume m ≈ 0 (no activation). This is the case
represented in Fig. 3.16A where the first step does not trigger any significant inward current. A
second step is then applied with high voltage V2 and the peak current is measured. If V2 is large
enough, then (by assumption) m∞(V2) = 1 and h∞(V2) = 0. It follows that during the second
step:

m = 1− e−t/τm(V2)

h = h∞(V1)e−t/τh(V2)

Therefore the current is proportional to h∞(V1). If V2 is held fixed while V1 is varied, then the
timecourse of the current is not changed, only its amplitude is. It follows that the peak current
is indeed proportional to h∞(V1). However, this depends critically on the assumption that V1
is such that m∞(V1) ≈ 0, that is, for moderate depolarizations. For larger V1, not only the
amplitude of the current depend on m∞(V1), and not only h∞(V1), but the peak is reached at
a time that depends on V1, i.e., the timecourse of the current is no longer invariant. Therefore
this method of measuring h∞ has a restricted range of applicability.

As for the K+ conductance, αh and βh can be deduced from estimates of h∞ and τh. These
estimates are shown on Figure 3.25 for a number of axons; the uncertainty is clearly significant
(compare with Fig. 3.23). The rates of activation and inactivation were then fitted to the
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Figure 3.25: Fitting Na+ inactivation properties of the squid axon (Hodgkin and Huxley, 1952a).
Rate constants of inactivation as a function of voltage (V = −Vm), estimated in different ax-
ons (adjusted for temperature) using a one-step activation protocol (method A) or a two-step
inactivation protocol (method B). Smooth curves are model fits.

following formulae:

αm = 0.1
−Vm + 25

exp((−Vm + 25)/10)− 1
(3.9)

βm = 4 exp(−Vm/18) (3.10)

αh = 0.07 exp(−Vm/20) (3.11)

βh =
1

exp((−Vm + 30)/10− 1)
(3.12)

This way of calculating activation curves (m∞(V )) and inactivation curves (h∞(V )), based
on one-step and two-step protocols, is still widely used in electrophysiology, but mostly to give
a general idea of the voltage-dependent properties of ionic channels. Quantitative fitting of
models would now be done numerically by using nonlinear fitting techniques, where parameters
are automatically adjusted so as to provide the best fit to a set of voltage-clamp measurements
(generally in the sense of least squares). Nevertheless, the same one-step and two-step protocols
are generally used to produce the experimental data to be fitted.
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Constant Value
C 1 µF/cm2

ENa 115 mV
EK −12 mV
EL 10.613 mV
gNa 120 mS/cm2

gK 36 mS/cm2

gL 0.3 mS/cm2

Table 3.2: Main constants of the Hodgkin-Huxley model.

3.4.4 The full model

Putting equations (3.1)–(3.12) together, we obtain a complete model of the space-clamped squid
axon, recapitulated below:

C
dVm
dt

= ḡNam
3h(ENa − Vm) + ḡKn

4(EK − Vm) + gL(EL − Vm) + I

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

dn

dt
= αn(1− n)− βnn

αm = 0.1
−Vm + 25

exp((−Vm + 25)/10)− 1

βm = 4 exp(−Vm/18)

αh = 0.07 exp(−Vm/20)

βh =
1

exp((−Vm + 30)/10− 1)

αn = 0.01
−Vm + 10

exp((−Vm + 10)/10)− 1

βn = 0.125 exp(−Vm/80)

where rates are in ms−1 and Vm is in mV in the expression of rates. The remaining constants
are listed in table 3.2. Conductance densities where obtained from the voltage-clamp measure-
ments discussed previously. Reversal potentials for Na+ and K+ were obtained from previous
experiments and are relative to the resting potential (i.e., Vm = 0 mV means the neuron is at
rest). The leak potential EL is chosen so that the resting potential of the model is 0 mV.

The full model predicts the membrane current measured in voltage-clamp, as well as the
membrane potential in current-clamp. A remarkable achievement of this model is that it makes
excellent predictions for both sets of experiments with no further optimization. In addition, the
model can be readily extended to a model of action potential propagation (by adding the axial
current, see chapter ??), and again with no further optimization, it correctly predicts action
potential shape, conduction velocity (to about 20%) and total conductance (as shown in Fig.
??A). Figure 3.26 shows action potentials produced by the model, compared with measured ones.
Some discrepancies are noticeable, for example in the repolarization phase, but otherwise the
match is excellent. The model also accounts for Na+ and K+ fluxes, subthreshold oscillations
and other phenomena.
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MODEL

SQUID

Figure 3.26: Simulated and measured action potential of the space-clamped squid axon (Hodgkin
and Huxley, 1952a). Top: action potential of the Hodgkin-Huxley model for different initial de-
polarizations (numbers in mV). Bottom: measured action potential of the space-clamped squid
axon for different initial shocks (numbers in nC/cm2, correponds to expected initial depolariza-
tion in mV).
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3.4.5 The squid axon after Hodgkin and Huxley

The Hodgkin-Huxley model was a great achievement, and it turned out that the same formalism
could be applied to virtually all excitable cells. The example of Paramecium shows that important
modifications can be necessary, for example inactivation of the inward current can depend on the
entry of current rather than on voltage. Although the Hodgkin-Huxley model is the historical
model of the squid axon action potential, research on this topic continued after 1952. Not
surprisingly, a number of modifications have been introduced since then, which are summarized
in (Clay, 2005). Here we shall mention a small number of them.

The K+ current

When discussing their results, Hodgkin and Huxley pointed out that their model of the K+

current did not fully account for the activation delay seen in voltage-clamp experiments. In
the model, this delay is tuned by the exponent 4 in the K+ current equation (n4). The reason
for choosing that exponent was mainly technical: it was computationally difficult to use larger
exponents. Later work showed that an exponent as large as 25 (n25) better accounts for the
experimental data (Cole and Moore, 1960).

More fundamentally, the K+ current actually follows the GHK theory, rather than a linear
model (Clay, 1991). In GHK theory, the current is the product of permeability and of a rec-
tifying function of voltage. Using the GHK equation for the K+ model makes the equilibrium
permeability n4∞(Vm) a much steeper function of voltage.

K+ ions can also accumulate around the axon during the repolarisation phase, which then
reduces the K+ current.

The Na+ current

In the frog node of Ranvier, it was found that the Na+ current follows GHK theory, not a
linear model (Frankenhaeuser, 1960). One may wonder why it would be linear in the squid
axon. This seems to be a serendipitous consequence of the interaction of external Ca2+ with
Na+ channels; in calcium-free medium, the Na+ current of the squid axon does follow the GHK
formula (Vandenberg and Bezanilla, 1991a).

Considerable research on Na+ channels has taken place since the 1950s, and many new models
have been proposed, including for the squid axon. These models generally take the form of kinetic
models of channels with a number of states and voltage-dependent transition rates (see chapter
??). They depart from the Hodgkin-Huxley model in several respects, reviewed in (Patlak,
1991) (see Tables 1 and 3 thereof). One is that activation and inactivation are not independent
processes (Bezanilla and Armstrong, 1977; Armstrong and Bezanilla, 1977; Vandenberg and
Bezanilla, 1991b,a). Rather, several state transitions toward the open state must occur before
the channel can be inactivated.

Other currents

Other channels than Na+ and K+ channels are known to exist in the squid axon. For example,
there are calcium channels that let extracellular calcium ions enter the axon when an action
potential is produced (Baker et al., 1971). A different type of Na+ channels, with distinct
electrophysiological properties, has also been found, although it accounts for a small proportion
of the current (Gilly and Armstrong, 1984).
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3.5 A quick guide to the 1952 Hodgkin-Huxley papers

It is an excellent exercise and introduction to electrophysiology to study the series of 5 papers
by Hodgkin, Huxley and Katz published in 1952. In these papers, the electrical conventions are
quite different from modern conventions. Membrane potential is relative to rest (i.e. 0 mV at
rest). In voltage-clamp results, voltage is the opposite of membrane potential, i.e., extracellular
potential minus intracellular potential, and current is oriented from extracellular to intracellular,
i.e., I > 0 means inward current.

1. Hodgkin, A. L., Huxley, A. F., and Katz, B. (1952). Measurement of current-voltage rela-
tions in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4):424–
448.

This paper introduces the space-clamp and voltage-clamp technique, including detailed
information about the feedback system of the amplifier. Capacitive currents and membrane
currents are presented.

2. Hodgkin, A. L. and Huxley, A. F. (1952). Currents carried by sodium and potassium ions
through the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4):449–
472.

In this paper, the membrane current is separated into Na+ and K+ components by manip-
ulating the sodium content of the extracellular medium. Currents are recorded in voltage-
clamp with an activation protocol (from rest to depolarized value).

3. Hodgkin, A. L. and Huxley, A. F. (1952). The components of membrane conductance in
the giant axon of Loligo. The Journal of Physiology, 116(4):473–496.

A deactivation protocol (voltage-clamp from depolarized value to rest) is used to demon-
strate the linearity of instantaneous current-voltage relationships, meaning that conduc-
tances reflect permeabilities.

4. Hodgkin, A. L. and Huxley, A. F. (1952). The dual effect of membrane potential on sodium
conductance in the giant axon of Loligo. The Journal of Physiology, 116(4):497–506.

The inactivation of the Na+ current is investigated using two-pulse voltage-clamp protocols.

5. Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and
its application to conduction and excitation in nerve. J Physiol (Lond), 117:500.

The model is built from the previous papers and fitted to voltage-clamp measurements. It is
then tested in a number of ways, in particular on various current-clamp and voltage-clamp
protocols, and extended to a model of propagation (conduction velocity is predicted).

3.6 Summary and epistemological notes

3.6.1 Biophysics of action potentials

Work on the squid axon has shown that action potentials are produced by reversible changes in
membrane permeability to specific ions. This mechanism appears to be at play in all excitable
cells, not only squid axons. The explosive, regenerative, nature of the action potential is due to
a positive feedback loop between membrane potential and membrane permeability to a specific
ion species. A positive ion is more concentrated outside than inside the cell (Na+ for the squid
axon, Ca2+ for Paramecium), and membrane permeability to that ion increases with membrane
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potential. As a result, stimulating the cell beyond a certain point produces an inward current,
which depolarizes the membrane, leading to an even greater inward current, etc. In plants,
a negative ion (Cl−) is more concentrated inside than outside the cell and flows out at spike
initiation, but the phenomenon is electrically equivalent. Thus the key biophysical ingredient
of action potentials is voltage-dependent increase in specific permeability, or in modern terms
voltage-dependent activation of ionic channels.

Repolarisation is due to a decrease in permeability to the same ion species and increase in
K+ permeability, both occurring slowly in comparison with than the rising phase of the action
potential. These changes in permeability may also be voltage-dependent, as in the squid axon,
or they may be triggered by the entry of the inward current, as in Paramecium.

3.6.2 Model making and model fitting

The Hodgkin-Huxley model recapitulates the above findings in a compact model, whose predictive
power is remarkable. It is important to appreciate the epistemological nature of the model.
First, it is primarily a model of the space-clamped squid axon, not a neuron model. It has been
extended to a model of action potential propagation in the squid axon. Second, by construction,
its relation to the natural system is through electrical variables (membrane potential, injected
current) and ionic variables (ion fluxes and concentrations). The gating variables (m, n and h)
have been introduced arbitrarily to fit the model to electrical experimental data but could be
neither measured nor manipulated. In fact, they have no physical reality; later work has shown
that the structure and dynamics of the channels are more complex than suggested by this model.
As is explicitly stated in the original articles, the description of the model in terms of channel
gates is only one possible interpretation of the equations. The models of the ionic currents are
phenomenological; the key part of Hodgkin-Huxley theory is in fact the membrane equation:

C
dVm
dt

+ INa + IK + IL = I

This is the part of the model that has been subjected to experimental testing; the rest of the
model is based on fitting measurements.

It is very instructive to understand the process of building the model, and the assumptions
behind it. It is now common to start from assuming that neural excitability can be described by
equations of the Hodgkin-Huxley type, and then to fit model parameters to experimental data.
Parametric model fitting, however, is the trivial part of the process. Let us recapitulate the
important assumptions behind the model:

1. Potential variations are only due to ionic and capacitive currents. This is the key assump-
tion underlying the membrane equation and Hodgkin-Huxley theory in general. It is trivial
when viewing the membrane as an electrical circuit, but this is only an analogy suggested
by the theory. One could imagine for example that the distribution of ions around the mem-
brane surface changes during excitation, or some more complex phenomenon involving the
interaction of the membrane and associated structures with the intra- and extracellular
medium, as proposed by Tasaki (2012). Other investigators have proposed that the action
potential is primarily mechanical and electrical impulses are due to piezoelectric effects
(Heimburg and Jackson, 2005).

2. Space can be ignored. The intracellular potential is assumed identical everywhere, and
space-independent variables are used for gating variables and currents. In the axial direc-
tion, this is imposed by the experimental design, with a conducting wire inserted along the
axon. For the propagating model, properties are considered uniform along the length of
the axon.
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3. The membrane current can be separated in specific ionic currents that do not directly
interact with each other. It could have been, for example, that the passage of Na+ and
K+ ions through the membrane is mediated by a shared mechanism, so that the two fluxes
might not be independent.

4. Ionic currents can be expressed as the product of ion specific permeability with driving
force (Vm − E). This was shown with deactivation experiments. As we have previously
discussed, this is not the generic case, as currents often follow GHK theory.

5. Permeability depends only on membrane potential. This is not the case in Paramecium,
for example, where the inactivation of the Ca2+ current is mediated by intracellular Ca2+.
It could also be, for example, that mechanical changes in the membrane have an effect on
permeability, through conformational changes in ionic channels (Anishkin et al., 2014).

6. Ion concentrations do not vary in either space or time. In principle, the entry of Na+ and
K+ ions should change the concentrations of these ions, which in turn would change the
amplitude of the ionic currents. This is neglected in the Hodgkin-Huxley model, on the
basis that these changes should be very small in the large squid axon (see section ??).
From the assumption of uniformity of the squid axon membrane, it is also assumed that
ionic concentrations are spatially constant. If this assumption were not valid, then one
should consider axial diffusion currents in addition to the electrical term present in the
cable equation.

This set of non-trivial assumptions forms the basis of the model; more specifically, of the
first equation of the model (the membrane equation). The rest of the model (the three other
equations) is an empirical quantitative description of the ionic currents, under the assumptions
of the model. These are not expected to be universal. The model fitting component is necessary
to make quantitative predictions. But it is important to realize that when these predictions
are compared to experimental data, what is being tested is not so much the model itself as the
theory behind it (mainly the ionic basis of the action potential). For example, the model can
make a quantitative prediction of Na+ influx during the action potential, which can be verified
with radioactive tracers. This is a remarkable prediction as it only follows from the fitted model
of the Na+ current under the assumption that the change in membrane potential is mainly due
to ionic currents.
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