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Chapter 4

Excitability of an
isopotential membrane

In this chapter, we address theoretical questions such as: under what conditions
is a membrane excitable? what determines the threshold for spike initiation? We
focus on the excitability of an isopotential membrane, such as the membrane of
the space-clamped squid giant axon. The situation is different in neurons since
action potentials are initiated in a small axonal region next to the cell body (the
axonal initial segment), as we will see in chapter ??, but the same concepts will
be used and some results also apply.

4.1 Elements of dynamical systems

4.1.1 What is a dynamical system?

The relevant mathematical framework to understand excitation is dynamical
systems theory. A dynamical system is defined by a space of possible states
s, and a rule that describes how the state of the system evolves in time. We
call this evolution a trajectory s(t). Importantly, at any given moment t0, the
future trajectory s(t), t ≥ t0, is entirely determined by the present state s(t0)1.

1In a random dynamical system, the future trajectory is not fully determined by the present
state; however, we consider that all the information we have about future trajectories is
contained in the knowledge of the present state s(t0).

Figure 4.1: Example of a dynamical system.

1



2 CHAPTER 4. EXCITABILITY OF AN ISOPOTENTIAL MEMBRANE

An example is a ball rolling on a landscape (Figure 4.1). What is the state
of this dynamical system? We note that the future trajectory of the ball is
not entirely determined by its position: here the ball might be going down or
going up. But according to Newton’s laws, the future trajectory is completely
determined if we know both the position and the (signed) velocity of the ball2.
Thus the state is characterized by two real numbers, which makes it a two-
dimensional dynamical system3. The Hodgkin-Huxley model is a 4-dimensional
dynamical system, since it has 4 state variables: membrane potential V and
gating variables m, h and n. It also has many parameters (e.g. capacitance),
which do not count as state variables because they are constant (just as the
mass of the ball).

The ball shown on Fig. 4.1 is an example of an excitable system. At a given
moment it may be sitting on the higher valley. If the velocity is zero, then the
ball will stay there forever. This state, defined by position = higher valley and
velocity = 0, is called a stable equilibrium. We may then tap the ball, giving
it some momentum. The tap is what we might call the stimulus in a biological
experiment. This means changing the state of the ball (position = higher valley,
velocity = positive number). If we tap gently, the ball will move up then go
back to its initial state. If we tap more strongly, the ball might pass the hill
and end up in the lower valley, which is also a stable equilibrium. There is a
threshold in stimulus strength that distinguishes between two distinct behaviors
of the system: converging to the higher valley, or converging to the lower valley.
This is what we call an excitable system.

The most common mathematical formalism to describe dynamical systems
in continuous time is differential equations4. If x is an n-dimensional vector
representing the state of the system, then its evolution is constrained by:

dx

dt
= f(x)

Under some fairly broad conditions on the function f5, this defines a dynam-
ical system, that is, the future trajectory of x(t) only depends on the present
state. All neural models discussed in this book are dynamical systems described
by differential equations.

In this chapter, we will expose elementary concepts of dynamical system
theory, as we will focus mostly on one-dimensional systems, simpler than a ball
rolling on a landscape. There is however a large body of theoretical work on
more advanced dynamical systems concepts applied to neural excitability, which
we will briefly describe in section ??.

4.1.2 Membranes as dynamical systems

Action potential models have at least two state variables

In an isopotential model, the membrane equation is a differential equation:

2or more precisely, position and momentum, which is mass times velocity.
3We assume that the ball always remains on the landscape. More generally, the ball

is characterized by two vectors, and therefore the system is 4-dimensional (if the ball is
constrained in a plane) or 6-dimensional.

4Discrete time would mean iterations of a map, as in an algorithm.
5given by the Cauchy–Lipschitz theorem.
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dV

dt
= f(V )

where f(V ) is the membrane current Im divided by the membrane capacitance
C. In general, f is actually also a function of other state variables, for example
the gating variables m, n and h in the Hodgkin-Huxley model. Thus, it does
not define a one-dimensional dynamical system. We obtain a one-dimensional
system in the simple case of a passive membrane, that is, where permeabilities
are fixed. For example, with a linear leak current (as in the Hodgkin-Huxley
formalism):

dV

dt
=
gL
C

(EL − V )

where C is membrane capacitance and gL is leak conductance. Here, dV/dt is
a function of V only: if we know V (0), then we can deduce the full trajectory
V (t) at any future time. One simple consequence is that all trajectories are
monotonous, either increasing or decreasing6 (or constant). This is a general
property of all one-dimensional dynamical systems7. In particular, action po-
tentials cannot be modeled by a one-dimensional dynamical system, because an
action potential is not monotonous: V increases then decreases. Thus we need
at least two state variables to make an action potential model8.

Spike initiation can be modeled as a one-dimensional dynamical sys-
tem

Although a full action potential cannot be modeled by a one-dimensional sys-
tem, the initiation of action potentials can, with a few approximations9. First,
we neglect voltage-gated K+ channels. That is, we assume that they do not
open on the time scale of interest (the initial rising phase of the action poten-
tial). Empirically, this indeed appears to be approximately the case for the squid
axon (figure 4.2) and cortical pyramidal cells (figure 4.3). In this chapter, we
will simply assume that they are closed. However, to obtain a one-dimensional
description, it is sufficient to assume that K+ permeability is fixed (but not nec-
essarily zero). Theoretically, there is a functional reason why the K+ current
should start only near the peak of the action potential: this situation is energet-
ically favorable since the K+ current opposes the Na+ current (with a positive
K+ current, more Na+ flux would be needed for the same net current). We
will examine the energetic question in more detail in chapter ??; let us simply
mention for now that there can be a significant overlap between the Na+ and
K+ currents, but mostly in the falling phase of the action potential (see Figs 4.2
and 4.3, and Carter and Bean (2009)). This first approximation implies that
we can model spike initiation with a simplified membrane equation:

dV

dt
=

1

C

(
IL + INa

)
6Indeed, if a trajectory were increasing then decreasing, then there would be a value of V

at which we have both f(V ) > 0 and f(V ) < 0.
7defined by differential equations.
8Two classical two-dimensional models of action potentials are the Fitzhugh-Nagumo model

(Nagumo et al., 1962) and the Morris-Lecar model (Morris and Lecar, 1981).
9These approximations are not reasonable for all excitable cells, as we will see when we

discuss excitability types in section ??.
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gNa
gK

Figure 4.2: Overlap of Na+ and K+ conductances in squid axon (adapted from
Hodgkin and Huxley (1952b)). The axon is clamped at the voltages indicated
on the left, relative to the resting potential (with the convention V = −Vm).

where IL and INa are leak and Na+ currents, respectively.
The second approximation consists in assuming that the Na+ current is

an instantaneous function of V , INa(V ). We then obtain a one-dimensional
dynamical system:

dV

dt
= f(V ) ≡ 1

C

(
IL(V ) + INa(V )

)
There are different ways to justify this approximation. One is phenomenolog-

ical: we simply look for the best fitting one-dimensional model. For example, in
figure 4.4, a cortical neuron is stimulated with a white noise current I(t), strong
enough to make the neuron spike. We then look for f(V ) such that

dV

dt
≈ f(V ) +

I(t)

C

in a least-square sense10 (Badel et al., 2008; Harrison et al., 2015). We can see on
the figure that f(V ) is approximately linear below −45 mV, which presumably
corresponds to the leak current IL(V ) (divided by C), and above −40 mV
there is a strong membrane current that presumably corresponds to the Na+

current INa(V ). As we will see in more detail in section 4.3.3, this current is
approximately exponential near spike initiation (see inset in figure 4.4).

Another way to justify the one-dimensional approximation is to consider
the time scales of the different processes. If we assume that 1) inactivation
develops only well after the initiation of the action potential (similarly to the K+

current), and 2) the time constant of Na+ channel activation is short, compared
to the time scale of spike initiation, then we can consider that INa is effectively
an instantaneous function of V . In the Hodgkin-Huxley model, this amounts
to replacing the gating variable m by its steady-state value m∞(V ), and the
inactivation variable h by its initial value h0. Figure 4.5A shows that, at 23 ◦C,

10That is, f(V ) is the average of dV/dt − I(t)/C, for all the instants when the membrane
potential is V .



4.1. ELEMENTS OF DYNAMICAL SYSTEMS 5

–62 mV–77 mV
Axon AP

INa

IK

–10 pA

20 mV
100 µs

Figure 4.3: Overlap of Na+ and K+ currents in an axonal patch of membrane
during an action potential, in a layer 5 pyramidal cortical neuron (adapted
from Hallermann et al. (2012)). The axonal patch (outside-out configuration) is
voltage-clamped at a time-varying value corresponding to a previously measured
action potential, with the neuron depolarized to either −77 mV or −62 mV.
Currents are isolated with ion channel blockers. In both cases, there is little K+

current during the initial phase of the spike.
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Figure 4.4: Average membrane current (divided by capacitance) as a function of
membrane potential during white noise stimulation of a cortical neuron (adapted
from Badel et al. (2008)). The inset shows f(V ) in logarithmic scale, over a
more depolarized range (−45 to 35 mV).
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Figure 4.5: Time constant of activation (A) and inactivation (B) in prefrontal
cortical neurons (adapted from Baranauskas and Martina (2006)).

Figure 4.6: A one-dimensional model of an excitable membrane. A, The model
is defined by dV/dt = f(V ). Stable equilibria are marked with filled disks, the
unstable equilibrium with an open disk. B, Simulated current-clamp experi-
ment, where the membrane potential is moved instantaneously to 4 different
values.

the maximum activation time constant is about 0.3 ms in prefrontal cortical
neurons (Baranauskas and Martina, 2006). At physiological temperature, one
would expect this maximum value to be smaller than 0.1 ms. Inactivation is
roughly two orders of magnitude slower (Fig. 4.5B). In the spike initiation
region (around −50 mV), inactivation is still quite slow compared to the action
potential rise (5-10 ms at 23 ◦C) and therefore we do not expect it to be a major
determinant of the initial Na+ current.

We will look at specific one-dimensional models in section 4.3, but for the
moment we can consider for example that C.f(V ) corresponds to the “early
current” shown in Fig. ??B and ??B, or to the average current shown in Fig.
4.4.
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4.1.3 Equilibria

Let us consider a one-dimensional dynamical system defined by dV/dt = f(V ),
which could be the membrane equation of an excitable cell, with f(V ) = I/C.
Figure 4.6A shows an example, which is similar to the early current shown in
Fig. ??B for the squid axon and in Fig. ??B for Paramecium, but modified
to be more readable. The graph of f can be used to predict the evolution of
V (t): if dV/dt = f(V ) > 0, then V (t) will increase; if f(V ) < 0, then V (t) will
decrease. We will call this graph the excitability curve. This is illustrated in
the simulated current-clamp experiment shown in Fig. 4.6B, where we instanta-
neously depolarize or hyperpolarize the membrane at different times. Physically,
it corresponds to delivering electrical shocks at different times.

An equilibrium or fixed point is a value of the state variable V such that
f(V ) = 0, so that V (t) remains constant. There are three equilibria in the model
of Fig. 4.6. The lowest one, V −, corresponds to the resting potential. If the
system is moved in the neighborhood of V −, as shown on Fig. 4.6B, then V (t)
converges back to V −. This is called a stable equilibrium. In this model, V + is
also a stable equilibrium, and corresponds to the peak of the action potential.
On the contrary, V ∗ is an unstable equilibrium: when the system is perturbed
around V ∗, V (t) moves away from V ∗, towards one of the two stable equilibria
V − and V +. More precisely, an equilibrium is called unstable when it is not
stable, i.e., there is at least one direction of perturbation where the system
moves away from the equilibrium.

What is the condition for an equilibrium to be stable? This is clear from the
excitability curve (graph of f) shown in Fig. 4.6A. We have f(V ) = dV/dt > 0
just below V − and f(V ) = dV/dt < 0 just above V −, so in both cases V (t)
evolves towards V −. This situation is obtained when f ′(V ) < 011. Conversely,
an equilibrium is unstable when f ′(V ) > 0. In the model shown in Fig. 4.6,
the unstable equilibrium V ∗ splits the state space12 (all possible values for V )
into the two basins of attraction of the stable equilibria V − and V +. The basin
of attraction of a stable equilibrium is the set of initial conditions V (0) such
that trajectories V (t) converge to that equilibrium. Thus, an unstable equilib-
rium defines the notion of a threshold : below V ∗, trajectories converge towards
the resting potential V −; above V ∗, trajectories converge towards the action
potential peak V +. This definition corresponds to a current-clamp experiment
in which an electrical shock is instantaneously applied to the membrane, and
then the membrane potential evolves with no stimulus. We will look at other
possible definitions of threshold in section 4.2.

11Proof: a Taylor expansion in the neighborhood of V − gives f(V ) ≈ f(V −) +f ′(V −)(V −
V −) = f ′(V −)(V − V −). Thus if f ′(V −) < 0 then dV/dt has the sign of V − − V . This is
a necessary but not sufficient condition, because of the special case f ′(V −) = 0, for example
with f(V ) = −V 3. Using a Taylor expansion, one can see that more generally, a stable
equilibrium is when there is an odd integer p such that f (k) = 0 for all k < p and f (p) < 0.
However, we will not encounter this situation in this chapter.

12In one-dimensional systems, there is always an unstable equilibrium between two stable
equilibria, as is graphically intuitive from Fig. 4.6A. Proof: if V − is a stable equilibrium,
then f(V ) < 0 just above V −; if V + > V − is a stable equilibrium, then f(V ) > 0 just below
V +. Therefore there is a point V ∗ in between such that f(V ∗) = 0. If we pick the lowest
such point, then we must have f(V ) < 0 just below V ∗, therefore V ∗ cannot be stable.
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Figure 4.7: Bifurcation in a one-dimensional model of an excitable membrane.
A, The model is defined by dV/dt = f(V ) + Ie/C, where Ie is an injected
current. The graph is for 3 different values of Ie (increasing from left to right).
B, Simulated current-clamp experiment, where current Ie is slowly increased.
The dashed lines correspond to the 3 curves shown in A. A spike is initiated
at the bifurcation point, when the graph shown in A is tangent to the line
dV/dt = 0.

4.1.4 Bifurcations

Another powerful concept in dynamical system theory is bifurcation. A bifurca-
tion is a change in the number or nature of equilibria. Suppose that we inject
a steady current Ie in the cell (the e subscript is for electrode or external), as
shown in Fig. 4.7. The membrane equation is then:

dV

dt
= f(V ) +

Ie
C
≡ g(V, Ie)

Now dV/dt depends on the state variable V and on the parameter Ie. We
start with a current Ie = 0: the membrane potential sits at the resting potential
V −. As we slowly increase Ie, the equilibrium value V − increases and V (t)
follows it, since it is a stable equilibrium. At some point, V − becomes unsta-
ble and disappears (middle curve in Fig. 4.7A). What happens then is that
the membrane potential V (t) increases towards the next stable equilibrium V +

(middle dashed line in Fig. 4.7B). This particular type of bifurcation is called
a saddle-node bifurcation: two equilibria collide and annihilate each other (the
resting potential and the unstable equilibrium).

We can see that the bifurcation occurs when the excitability curve (graph
of dV/dt vs. V ) is tangent to the line dV/dt = 0 (Fig. 4.7A). Mathematically,
this means:

g(V, Ie) = 0

∂g

∂V
(V, Ie) = 0

There are two equations and two unknowns, and so this couple of equations
allows us in principle to deduce the values of V and Ie where the bifurcation
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occurs, called the bifurcation point13. The beauty of bifurcation theory is it
applies to the change of any parameter. For example, imagine we slowly in-
crease the density of Na+ channels, starting from an inexcitable cell. At the
beginning there is a single stable equilibrium, but then at some point a new
stable equilibrium appears, together with an unstable equilibrium. This point
where the cell becomes excitable is a bifurcation point (again a saddle-node
bifurcation). If we keep on increasing channel density, at some point the rest-
ing potential will disappear and there will be a single stable equilibrium: the
system goes through a second saddle-node bifurcation. Bifurcation is a very
general and useful concept: every time we are considering a situation where a
graded change in a parameter results in a discrete change in behavior, we are
looking at a bifurcation. Bifurcation theory gives us simple mathematical tools
to calculate when these changes occur. In the following, we will apply it to
stimulus strength, to Na+ conductance and to properties of the Na+ channels.

4.2 The threshold

4.2.1 Different ways to excite a membrane

In the previous section, we have seen two ways to excite a membrane. The
first way was to deliver an instantaneous electrical shock of charge Q, as in Fig.
??. The effect is to instantaneously shift the potential by Q/C, as shown on
Fig. 4.6B14. If the membrane is initially at rest (V = V −), then this stimulus
brings the potential to V −+Q/C. Then V (t) will evolve towards one of the two
stable equilibria, depending on whether V − + Q/C > V ∗. Thus we can define
a threshold for voltage, which is the unstable equilibrium V ∗, and a threshold
for stimulus strength, in this case a charge threshold, equal to:

Q∗ = C(V ∗ − V −)

This is the minimum charge necessary to trigger an action potential. Another
way to excite a membrane is to deliver a steady current Ie and increase it slowly,
as in section 4.1.4. Again we can define a threshold for stimulus strength,
this time a current threshold I∗e , which can be calculated using the bifurcation
equations (see section 4.1.4). This current threshold is called rheobase. We can
also define a voltage threshold, as the membrane potential at the bifurcation
point. This is the maximum membrane potential that can be reached without
eliciting a spike. While this definition also applies to the voltage threshold
we have defined for instantaneous shocks, the value of the voltage threshold is
different in the two cases. For instantaneous shocks, the voltage threshold is a
solution to f(V ) = 0; for steady currents, the voltage threshold is a solution to
f ′(V ) = 0. These two equations have different solutions.

This can be seen in Fig. 4.7A. A voltage threshold for instantaneous shocks
can be defined for a low value of Ie, corresponding to the first curve on the left.
As we have seen, this threshold is the unstable equilibrium, the second point

13Note that there are actually two such solutions.
14using the physical relation Q = CV that defines capacitance. Alternatively, one can define

the injected current as Ie(t) = Qδ(t), where δ(t) is the Dirac function such that δ(t) = 0 when
t 6= 0 and

∫
δ = 1. One can check that indeed

∫
Ie = Q. Then integrating the membrane

equation over a small time gives ∆V = Q/C.
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A B

Figure 4.8: Spike onset (adapted from Platkiewicz and Brette (2010)). A, Sim-
ulated trace of a Hodgkin-Huxley-type model with noisy injected current (rep-
resenting synaptic inputs), with spike onset measured by the first derivative
method. B, Representation of the trace in (A) in phase space, showing dV/dt
vs. V . The first derivative method consists in measuring the membrane po-
tential V when the derivative crosses a predefined value (dashed line) shortly
before an action potential. The trace is superimposed on the excitability curve
dV/dt = (f(V ) + I0)/C, which defines the dynamics of the model. I0 is the
mean input current, so that trajectories in phase space fluctuate around this
excitability curve.

where the excitability curve crosses the line dV/dt = 0. On the other hand,
the voltage threshold for a slowly increasing current Ie corresponds to the point
where the excitability curve is tangent to the line dV/dt = 0 (second curve). It
appears that this voltage threshold is lower. In other words, in a one-dimensional
model of excitable membrane, the voltage threshold for electrical shocks is higher
than the voltage threshold for steady currents15. In the following, we will refer
to the voltage threshold for instantaneous shocks as the threshold for fast inputs,
the voltage threshold for steady currents as the threshold for slow inputs.

Thus, in general the voltage threshold is a concept that depends on the type
of stimulation; there is no voltage threshold independent of stimulation (Koch
et al., 1995). We will see however that this can be different when we take into
account the geometry of the spike initiation system, in particular the fact that
spikes are initiated in a small axonal region next to the cell body (chapter ??).

4.2.2 Spike onset

In the experimental literature, the terms spike threshold are often used to refer
to a measurement of the voltage at the onset of action potentials. Figure 4.8A
shows the simulated membrane potential of model of the Hodgkin-Huxley type
(same type of equations, but different models for the ionic currents), where
a noisy current representing synaptic inputs is injected. The spike onset is
measured using the first derivative method, which consists in measuring the
membrane potential V when its derivative dV/dt crosses an empirical criterion
(Azouz and Gray, 1999; Kole and Stuart, 2008) (Fig. 4.8B). Other methods
have been used to measure spike onset (Sekerli et al., 2004). The second and

15We will see in chapter ?? that this can be different when Na+ channel inactivation is
taken into account.
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Figure 4.9: Activation curve of Na+ channels of hippocampal granule cells,
in axon and soma (adapted from Schmidt-Hieber and Bischofberger (2010)).
It is obtained from the peak current measured in an activation voltage-clamp
protocol.

third derivative methods consist in measuring V when respectively d2V/dt2 and
d3V/dt3 reach their maximum (Henze and Buzsaki, 2001; Wilent and Contreras,
2005). Sekerli et al. (2004) compared those methods by asking electrophysiolo-
gists to identify spike onsets by eye on several membrane potential traces. They
found that visual inspection was best matched by the first derivative method,
although that method critically relies on the choice of the derivative criterion.

If Na+ channels opened as a step function of membrane potential, then spike
onset and the various definitions of voltage threshold (fast and slow inputs)
would all be identical. However, this is not the case in general. In Fig. 4.8B, we
see that the spike onset defined by the first derivative method is higher than both
the threshold for fast inputs (intersection of excitability curve and line dV/dt =
0) and for slow inputs (minimum of the excitability curve). Nonetheless, spike
onset is often used as a proxy for spike threshold (in particular of its dynamics,
see chapter ??) because these can be quantitatively related to each other when
the excitability function f(V ) is known (Platkiewicz and Brette, 2010). Further
arguments will be given in chapter ??, where we will see that axonal Na+

channels open as a step function of somatic membrane potential.

4.3 Three simplified models of excitability

We have seen in section 4.1.2 that spike initiation can be (approximately) mod-
eled by a one-dimensional dynamical system. Here we will examine three sim-
plified models that will allow us to make analytical calculations.

4.3.1 The sharp model

The simplest model consists in assuming that Na+ channels open as a step
function of membrane potential. If we define m(V ) as the proportion of open
channels as a function of V , then:

m(V ) = H(V − V1/2)
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Figure 4.10: The sharp model of excitability. A, Excitability curve of the sharp
model, with V1/2 = −40 mV. B, Simulated membrane potential trace of an
integrate-and-fire model, responding to a step current.

where H is the Heavyside function16 and V1/2 is called the activation voltage
or half-activation voltage (the reason for these terms will be clearer in the next
section). Figure 4.9 shows m(V ) vs. V , which we will call the activation curve
of the Na+ channels, for granule cells of the hippocampus (from Schmidt-Hieber
and Bischofberger (2010)). To obtain this curve, the peak Na+ current is mea-
sured with an activation protocol in voltage-clamp, and is then divided by the
driving force (ENa − V ) to obtain a conductance g(V )17. The conductance
is then divided by the maximum conductance to obtain m(V ) ≡ g(V )/max g.
The measured function m(V ) is clearly not a step function, but if we consider
the entire relevant voltage range, from −80 mV to the reversal potential of Na+

(ENa ≈ 50 mV), we may (roughly) approximate m(V ) by a step function with
activation voltage Va ≈ −40 mV (for the somatic channels) or −50 mV (for the
axonal channels).

This is of course a very crude approximation, but it will help us develop some
intuition. To be more specific, we will consider a model with linear currents as
in the Hodgkin-Huxley model, so that the membrane equation is:

C
dV

dt
= gL(EL − V ) + gNaH(V − V1/2)(ENa − V )

where the first term is the leak current IL and the second term is the Na+

current. The excitability curve is represented on Figure 4.10A. Most of our
analysis is directly applicable to other permeability models, in particular GHK
theory.

In the sharp model, the various definitions of voltage threshold and spike
onset match and correspond to the activation voltage V1/2. This corresponds
to a simple neuron model known as the integrate-and-fire model. The integrate-
and-fire model is a phenomenological neuron model, first introduced by Lapicque

16such that H(x) = 1 if x > 0 and H(x) = 0 otherwise.
17Note that it is implicitly assumed that the Na+ current follows a linear current-voltage

relation as in the Hodgkin-Huxley model, but this may not be correct.
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Figure 4.11: Activation properties of Na+ channels, showing Boltzmann slope
factor k vs. half-activation voltage V1/2 in a number of rat Na+ channels,
collected from various channel subtypes and experimental preparations (adapted
from Angelino and Brenner (2007)). Black: neuronal channels; red: muscular
channels.

(1907), which is defined by a membrane equation without voltage-dependent
ionic channels:

C
dV

dt
= gL(EL − V ) + Ie

where Ie is an injected current. A spike is triggered when V reaches some
threshold value Vt (corresponding to V1/2 in the sharp model), then the mem-
brane potential is instantaneously reset to a value Vr and maintained there for
a refractory period ∆ (Fig. 4.10B).

Since in this chapter we are only interested in spike initiation, we will discuss
only the spike initiation component of the integrate-and-fire model, which we
call the sharp model of spike initiation.

4.3.2 The Boltzmann model

A more accurate model is the Boltzmann model, where the Na+ channel acti-
vation curve m(V ) is modelled as a Boltzmann function. On Figure 4.9, the
curves are fits of Boltzmann functions to patch-clamp measurements of the ac-
tivation curve (peak conductance vs. V , relative to maximum conductance).
Measurements are indeed generally well fitted by a Boltzmann function, which
is defined as:

m(V ) ≡ 1

1 + e(V1/2−V )/k

where V1/2 is the half-activation voltage, such that m(V1/2) = 1/2, and k is the
Boltzmann slope factor. Figure 4.6A shows the excitability curve of a Boltzmann
model (including a leak current). The slope factor k quantifies the voltage range
over which the channels open. Specifically, the proportion of open channels goes
from about 1/4 at voltage V1/2− k to about 3/4 at voltage V1/2 + k. The sharp
model is obtained is the limit k → 0 mV. Figure 4.11 gives typical values for
V1/2 and k.

It is important to realize that these channel properties can vary between cells
and even within a cell, because there is no such thing as “the Na+ channel”.
First, there are 9 subtypes of voltage-gated Na+ channels (named Nav1.1 to
Nav1.9), each corresponding to one gene coding the main protein, called α-
unit. A channel is made of an α-unit and additional proteins called β-units.
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Channel properties depend on the expression of β-units. In addition, the α-unit
can be altered by alternative splicing (different versions of the gene) and by
phosphorylation (Levitan, 1994), that is, post-translational alterations of the
protein. Therefore, values shown in Fig. 4.11 and individual studies should be
understood as general orders of magnitude.

An additional value of the Boltzmann model is it can be derived from a
simple biophysical model. If we assume that the channel can be in two states
(open and closed) with different potential energies, then according to mechanical
statistics the probability that the channel is in the open state is:

m(V ) =
1

1 + e
∆E
kBT

where ∆E is the potential energy difference between the two states, kB is the
Boltzmann constant (about 1.38× 10−23 J.K−1) and T is absolute temperature
in Kelvin. The potential energy difference includes the difference in electrical
potential energy and a voltage-independent term ∆E0 which reflects the dif-
ference in protein conformation. A difference in electrical potential energy can
arise if charges are moved when the protein changes state, and it will then be
proportional to the membrane potential18. For example, if in the closed state
the channel has a charge q on the external side of the membrane, which is then
moved to the internal side of the membrane in the open state, then the potential
energy difference is qV . The proportion of open channels would then be:

m(V ) =
1

1 + e
qV +∆E0

kBT

Thus we obtain the Boltzmann model of Na+ channel activation, where the
Boltzmann slope factor k is related to the number of charges that are moved
when the channel opens. Hodgkin and Huxley used this reasoning to propose
that the channel carries 6 negative elementary charges (Hodgkin and Huxley,
1952a).

Although the Boltzmann model is theoretically appealing and has some em-
pirical support, it should not be forgotten that it totally neglects the dynamics of
channel opening, as for the other simplified models we consider in this chapter.
There is another, more subtle, qualification to be made to the fact that patch-
clamp measurements of Na+ channel activation curves are well fitted by Boltz-
mann functions. Fits to experimental data are done on large voltage ranges,
which go well beyond the spike initiation region (−80 to 10 mV in Figure 4.9).
This means that the fit is mostly sensitive to the shape of the empirical curve
where it varies most, i.e., near half-activation voltage. The match may not be
excellent in the region that is most relevant for spike initiation, and where the
data are noisier (because currents are smaller). This problem is illustrated on
Figure 4.12, which shows on the activation curve of an empirical model of Na+

channels how the fitting results depend on the voltage region chosen for the fit
(a three-fold variation in estimated k). This issue arises in part from the fact
that many Na+ channel models use several activation gates, as in the Hodgkin-
Huxley model, which uses 3 (the m3 factor). If the equilibrium function of each
gate (m∞(V )) is a Boltzmann function, then the activation curve is not exactly

18at least in a constant field model.
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Figure 4.12: Fitting the Na activation curve to a Boltzmann function (adapted
from Platkiewicz and Brette (2010)). A, The Na channel activation curve of a
Hodgkin-Huxley type model (black line) was fit to a Boltzmann function on the
entire voltage range (dashed blue line) and on the spike initiation range only
(−60 mV to −40 mV, red line). The green line shows the exponential fit on
the spike initiation range. B, In the hyperpolarized region (zoom of the dashed
rectangle in A), the global Boltzmann fit (dashed blue line) is not accurate,
while the local Boltzmann fit and the local exponential fit better match the
original curve.

a Boltzmann function (m3
∞(V )). In addition, the activation curve is measured

from the peak current in a voltage-clamp experiment, which means that the
measurements may be influenced by the development of inactivation (see for
example Fig. 10 in Platkiewicz and Brette (2010)).

In this chapter, we will use the Boltzmann model with a linear current-
voltage relation, that is:

C
dV

dt
= gL(EL − V ) + gNam(V )(ENa − V )

where m(V ) is a Boltzmann function. It is of course possible to consider the
Boltzmann model of Na+ channel activation with the GHK model of currents.

4.3.3 The exponential model

The third simplified model we will consider is the exponential model. It was
introduced by Fourcaud-Trocme et al. (2003) as an approximation of models of
the Hodgkin-Huxley type that allows analytical calculations. It is based on the
Boltzmann model. In the hyperpolarized range, that is, when V << V1/2, the
Boltzmann function can be approximated by an exponential function:

m(V ) ≈ e(V−V1/2)/k

as shown on Fig. 4.12 (green curve). However, as noted in section 4.3.2, Boltz-
mann functions are fitted to empirical measurements over a large voltage range,
not on the hyperpolarized range. Nevertheless, Figure 4.13 shows that in the
squid axon, the peak Na+ conductance is indeed relatively well fitted by an ex-
ponential function of voltage in the low voltage range, here between the resting
potential and about 20 mV above it (Hodgkin and Huxley, 1952b). In cortical
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Fig. 9. Maximum sodium conductance reached during a voltage clamp. Ordinate: peak conduc-
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Abscissa: displacement of membrane potential from resting value (depolarization negative).

TABLE 2. Peak values of sodium and potassium conductance at a depolarization of 100 mV.
Same experiments as Figs. 9 and 10. In each case, the value given in this table is represented
as unity in Fig. 9 or Fig. 10.

Peak conductances at -100 mV.

Temp. Sodium Potassium
Axon no. (O C.) (m.mho/cm.2) (m.mho/cm.2)

15 11 21
17 6 18 20
18 21 28
20 6 22 23
21 8-5 23 31
21 8*5 17 -

Mean 20 25

Figure 4.13: Na+ activation curve of the squid axon shown in logarithmic scale,
fitted by an exponential function (dashed line) (Hodgkin and Huxley, 1952b),
with a slope factor k ≈ 4 mV. The horizontal axis shows V0 − Vm, where V0 is
the resting potential.

A B

Figure 4.14: Na+ activation curve of a pyramidal neuron of the prefrontal cortex
(A), with the hyperpolarized region shown in logarithmic scale (B) (adapted
from Baranauskas and Martina (2006)). Relative permeability is obtained based
on the GHK model.



4.3. THREE SIMPLIFIED MODELS OF EXCITABILITY 17

100 200 300 400

−60

−20

20

Time (ms)

)V
m( laitnetop enarb

me
M

HH model
AdEx

Figure 4.15: Simulated voltage trace of an adaptive exponential model (AdEx)
fitted to a Hodgkin-Huxley type model, in response to a noisy current (adapted
from Brette and Gerstner (2005)).

neurons, Na+ permeability is well fitted by a Boltzmann function of voltage
on a large range (Fig. 4.14A), and by an exponential function of voltage with
similar slope factor in the hyperporalized range (Fig. 4.14B) (Baranauskas and
Martina, 2006)).

With the linear model of currents, the Na+ current is then:

INa = gNae
(V−V1/2)/k(ENa − V )

We make a further approximation, by replacing V by V1/2 in the driving
force. By making this approximation, we introduce a relatively small error.
Indeed, far below spike threshold, this current is very small, and therefore the
error has little effect. Near threshold, we make a relative error of (V1/2 −
V )/(ENa − V1/2); with ENa = 60 mV, V = −50 mV and V1/2 = −30 mV, we
obtain about 20%. Thus the membrane equation of the exponential model is:

C
dV

dt
= gL(EL − V ) + gNae

(V−V1/2)/k(ENa − V1/2)

Again this can easily be extended to the GHK model of currents. An inter-
esting aspect of this model is it is also the basis of an integrate-and-fire type
model. In this model, when a spike is initiated, the membrane potential di-
verges to infinity in finite time. An integrate-and-fire model can then be defined
by considering that spike timing is the time of divergence, and the membrane
potential is reset to some value after this event. This is called the exponential
integrate-and-fire model (Fourcaud-Trocme et al., 2003). This model can be
fitted to models of the Hodgkin-Huxley type and can reproduce their response
relatively accurately19, as shown on Fig. 4.15 (Brette and Gerstner, 2005). Vari-
ations of this model are also able to predict spike trains of real cortical neurons
on a millisecond basis, when stimulated by noisy currents injected at the soma
(Badel et al., 2008; Rossant et al., 2010, 2011; Harrison et al., 2015).

The exponential model has the same limitations as the Boltzmann model
(e.g. it is a one-dimensional model), and in addition it is only relevant to exam-
ine spike initiation, since the Boltzmann function is approximately exponential
in the hyperpolarized range only.

19with an additional equation that models voltage- and spike-triggered adaptation.
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4.4 What determines the threshold?

4.4.1 The threshold equation

What is the relation between the various biophysical parameters (Na+ and leak
conductances, Na+ channel properties) and the value of the spike threshold?
In the sharp model, the voltage threshold is the half-activation voltage V1/2,
independently of the way the neuron is stimulated (Fig. 4.10). In other models,
as we have seen in section 4.2, a voltage threshold can be defined as the max-
imum membrane potential that can be reached without triggering a spike, but
its value depends on the type of stimulation.

For simplicity, we will consider the exponential model. An analysis of the
Boltzmann model can be found in appendix ??; the results are very similar.
The membrane equation with a stimulating current I is:

C
dV

dt
= gL(EL − V ) + gNae

(V−V1/2)/k(ENa − V1/2) + I

First, we multiply by the membrane resistance R = 1/gL, and we rewrite
the Na+ driving force in units of k so as to make a unitless factor appear in
front of the exponential:

τ
dV

dt
= EL − V + k

gNa
gL

(ENa − V1/2
k

)
e(V−V1/2)/k +RI

We then insert this unitless factor in the exponential:

τ
dV

dt
= EL − V + ke(V−θ)/k +RI

where

θ = V1/2 − k log
(gNa
gL

ENa − V1/2
k

)
By this algebraic manipulation, we can see that the Na+ current-voltage

relation is voltage-shifted by a quantity θ, which captures the dependence to all
parameters gL, gNa, V1/2 and ENa. In fact, θ is the threshold for slow inputs.
This can be seen by solving f ′(V ) = 0, where f(V ) is the right handside of the
differential equation. Thus we will call the formula for θ the threshold equation.
It has been derived in Platkiewicz and Brette (2010).

As we have seen, the threshold depends on the type of stimulation. For
example, the threshold for fast inputs is the solution of f(V ) = 0, which gives
a different value (see Platkiewicz and Brette (2010)). However, our algebraic
manipulation shows that this value will still be a function of θ and k, and so θ
does capture the relative contribution of the different biophysical parameters to
excitability.

It is possible to calculate the threshold for slow inputs in the Boltzmann
model, by solving f ′(V ) = 0. This calculation gives a slightly modified formula
(see appendix ??):

θBoltzmann ≈ V1/2 − k log

(
gNa
gL

ENa − V1/2
k

− 1

)
As we have already noted, the threshold for the sharp model is θ = V1/2.

We can see that this is consistent with the threshold equation when k tends to
0 mV, for both the exponential model and the Boltzmann model.



4.4. WHAT DETERMINES THE THRESHOLD? 19

!"#"$%&'(# () *%'$+ () %,&'(# *(&"#&'%-+

!" #$%&'(#)*(& #+ (,& +*#-./& "+ * '0*-- $.01&/ "+ (,& '"2#.0 3,*$$&-'
#04*#/' '.33&''#%& *3(#"$ 4"(&$(#*-'5 4*#/' "+ *3(#"$ 4"(&$(#*-' 6&/&

&-#3#(&2 *( (,"'& !!7 3"$3&$(/*(#"$' *( 6,#3, (,& '#$)-& *3(#"$
4"(&$(#*- 6*' $"( *++&3(&28 9$ * :/'( '(&45 4*#/' "+ *3(#"$ 4"(&$(#*-'
6&/& &-#3#(&2 6#(, * :;&2 #$(&/4.-'& #$(&/%*- #$ #$3/&*'#$) !!7
3"$3&$(/*(#"$'8 <' 3*$ 1& '&&$ +/"0 (,& "/#)#$*- /&3"/2#$)' #$

=9>8 ?8 @++&3(' "+ !!7 "$ '"2#.0 3.//&$(' *$2 '#$)-& *3(#"$ 4"(&$(#*-' "+ *3.(&-A #'"-*(&2 B<? $&./"$' +/"0 (,& ).#$&*C4#) ,#44"3*04.'8 D<E F/#)#$*- /&3"/2#$)'
"+ '"2#.0 3.//&$(' D95 .44&/ (/*3&'E *$2 *3(#"$ 4"(&$(#*-' DGH5 -"6&/ (/*3&'E .$2&/ 3"$(/"- 3"$2#(#"$' *$2 *( !!7 3"$3&$(/*(#"$' +/"0 I8? .4 (" ?III $0"-JK8
B.//&$(' 6&/& &-#3#(&2 +/"0 * ,"-2#$) 4"(&$(#*- "+ LMI0N 6#(, %"-(*)& '(&4' (" LOI0N D2./*(#"$ P0'5 #$(&/4.-'& #$(&/%*- Q 'E8 !,& /&3"/2#$)' */& 3"//&3(&2 +"/
-&*R*)& 3.//&$('8 <3(#"$ 4"(&$(#*-' 6&/& &-#3#(&2 +/"0 * 0&01/*$& 4"(&$(#*- "+ LMQ (" LS?0N 1A 3.//&$( #$T&3(#"$' "+ I8P $< D2./*(#"$ O0'5 #$(&/4.-'& #$(&/%*-
Q 'E8 !,& 4*''#%& 0&01/*$& 4"(&$(#*- 3,*$)&' 3*.'&2 1A (,& 3.//&$( #$T&3(#"$ D"1(*#$&2 *( 3"04-&(& 1-"3R*2& "+ (,& '"2#.0 3.//&$(' #$ P!0"-JK !!7E */&
'.1(/*3(&28 !,& *//"6 #$ (,& /&3"/2#$) 6#(, ?III $0"-JK !!7 #$2#3*(&' (,& (#0& "+ (,& 4&*R '"2#.0 3.//&$( .$2&/ 3"$(/"- 3"$2#(#"$'8 DUE V"'&L/&'4"$'& 3./%&' +"/
(,& &++&3(' "+ !!7 "$ (,& *04-#(.2&' "+ '"2#.0 3.//&$(' D:--&2 3#/3-&'E *$2 *3(#"$ 4"(&$(#*-' D<H5 "4&$ 3#/3-&'E8 !,& *04-#(.2&' */& $"/0*-#W&2 (" 3"$(/"- %*-.&'8
@*3, 2*(* 4"#$( /&4/&'&$(' (,& 0&*$!X@G "+ '&%&$ (" $#$& &;4&/#0&$('8 !,& 0&*$ %*-.&' 6&/& :((&2 6#(, K*$)0.#/ &Y.*(#"$'8 !,& 9BPI %*-.&' *$2 Z#--
3"&+:3#&$(' 6&/& [8Q $0"-JK *$2 I8S? +"/ (,& '"2#.0 3.//&$('5 *$2 ?IQ $0"-JK *$2 ?8O\ +"/ (,& *3(#"$ 4"(&$(#*-'5 /&'4&3(#%&-A D'&& 2"((&2 -#$&'E8 DBE B,*$)& "+
*3(#"$ 4"(&$(#*- D<HE *04-#(.2& D"4&$ 3#/3-&'E5 2./*(#"$ D"4&$ 2#*0"$2'E5 0*;#0.0 /*(& "+ /#'& D"4&$ 'Y.*/&'E *$2 '"2#.0 3.//&$( *04-#(.2& D:--&2 3#/3-&'E *(
#$3/&*'#$) !!7 3"$3&$(/*(#"$'8 <-- 4*/*0&(&/' */& $"/0*-#W&2 (" 3"$(/"- 3"$2#(#"$'8 @*3, 2*(* 4"#$( /&4/&'&$(' (,& 0&*$!X@G "+ :%& (" '&%&$ &;4&/#0&$('8 !,&
*3(#"$ 4"(&$(#*- 4*/*0&(&/' 6&/& :((&2 6#(, &;4"$&$(#*- +.$3(#"$'] (,& :( "+ (,& '"2#.0 3.//&$( 6*' "1(*#$&2 +/"0 U8 < '#)$#:3*$( 3,*$)& D^ P_ "+ 3"$(/"-E 6*'
"1(*#$&2 +"/ (,& *04-#(.2& "+ (,& '"2#.0 3.//&$( 6#(, I8\ $0"-JK !!78 !,& /&'4&3(#%& %*-.&' +"/ (,& 0*;#0.0 /*(& "+ /#'& "+ (,& *3(#"$ 4"(&$(#*- 6&/& \8? $0"-JK
!!7] +"/ (,& 2./*(#"$ "+ (,& *3(#"$ 4"(&$(#*-5 [8P $0"-JK !!7] *$2 +"/ (,& *04-#(.2& "+ (,& *3(#"$ 4"(&$(#*-5 ??8O $0"-JK !!7 D'&& 2"((&2 -#$&'E8 <( (,&'&
3"$3&$(/*(#"$'5 (,& '"2#.0 3.//&$(' 6&/& /&2.3&2 1A \Q (" [Q_ "+ 3"$(/"- D'&& 2"((&2 -#$&'E8

V" $&./"$' ,*%& * /&'&/%& "+ '"2#.0 3,*$$&-'` \

" OIII @./"4&*$ a&./"'3#&$3& <''"3#*(#"$5 !"#$%&'( )$"#('* $+ ,&"#$-./&(.&5 !"5 ?Lb

Figure 4.16: Dose-response curve of TTX, showing the fraction of available
Na+ channels as a function of TTX concentration in CA1 hippocampal neurons
(black dots; from Madeja (2000)).

4.4.2 Experimental observations

Our theoretical analysis applies to isopotential models. However, as we will see
in section ??, the dependence of threshold on Na+ channel properties should
still be well captured by our analysis in the case when action potentials are
initiated in the axonal initial segment. We expect this level of generality because
the analysis relies on rewriting the Na+ current so as to make a voltage shift
appear in the current-voltage relation of the channels. However, our analysis
does not include the specific role of geometrical factors, which we will examine
later (section ??). We now examine a few experimental observations that are
relevant to the threshold equation. As we will see, current experimental data do
not allow us to test very precise predictions, only general orders of magnitude.

Blocking Na+ channels

The equation predicts that the spike threshold varies with gNa as −k log gNa.
As we have pointed out in section 4.3.2, there is some uncertainty about the
value of k, but the order of magnitude should be about 5 mV. The available
Na+ conductance can be manipulated by various means. One way is to use
the Na+ channel blocker TTX (tetrodoxin). A fraction of Na+ channels can
be blocked by TTX, depending on its concentration, without affecting channel
properties (in particular V1/2) (Hu et al., 2009). The relation between the
available fraction of channels and TTX concentration [TTX] is shown on Fig.
4.16 for hippocampal neurons. This curve, called a dose-response curve, can be
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pyramidal neuron receiving myelination from one of these oligo-
dendrocyte processes (Fig. 5A). The average distance of the my-
elin to the axon hillock was 39.9 ! 5.2 !m, and the average length
of this myelin process was 50.2 ! 9.6 !m (n " 6). These results
indicate that the length of the unmyelinated initial segment re-
gion is #40 !m, the length of the first region of myelination is

Figure 3. Impact of local reductions in sodium current on AP properties. A, Example of APs evoked
by somatic current injection during brief (20 ms) low-sodium application to the axon initial segment
(20 !m from the axon hillock) compared with control APs recorded before and after low-sodium
application. Low-sodium extracellular solution led to a significant increase in both AP threshold and
the amplitude of the somatic current step (bottom) required to reach threshold. B, Average shift in
somatic AP threshold and amplitude (C), relative to control during brief application of low-sodium
solution (filled circles) or normal extracellular solution (open circles) to the axon at different locations.
S, Soma. The axon hillock is 0 !m. D, APs evoked by somatic current injection during brief (5–10 ms)
focal application of TTX (10!M) to the axon initial segment (20!m from the axon hillock) compared
with a control AP recorded before TTX application.

Figure 4. Impact of axonal length on AP properties. A, Confocal images of layer 5 pyramidal
neurons (Alexa 568) with axons of the indicated lengths. Note the characteristic bulbous end of
the severed axon. B, Double differentiation of the somatic AP voltage in the neurons illustrated
in A. All neurons exhibited two distinct components, presumably resulting from the separate
charging of the initial segment and the soma. C, The voltage change required to reach AP
threshold (top) and AP amplitude (bottom) measured from threshold in neurons with different
axon lengths (21–968 !m; n " 108). APs evoked by somatic current injection.
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Figure 4.17: Effect on somatic action potential of focal application of TTX on
the axonal initiation site (from Palmer and Stuart (2006)).

fitted by a Hill function:

f =
1

1 +
(

I50

[TTX]

)n
where f is the fraction of available (non-blocked) channels, I50 is the concentra-
tion at which 50% of the channels are blocked, and n is called the Hill coefficient.
The data shown in Fig. 4.16 are fitted by a Hill function with I50 = 6.4 nmol/L
and n = 0.91; we will assume n = 1 for simplicity. The action of TTX may
actually depend on the channel subtype. The same measurements were done
in Xenopus laevis oocytes where specific channel subtypes were expressed, and
the fits gave I50 = 7.8 nmol/L and n = 1.2 for Nav1.6 (the low-voltage subtype
expressed in the axonal initial segment), and I50 = 3.8 nmol/L and n = 1.2 for
Nav1.2 (another subtype expressed in the AIS) (Rosker et al., 2007).

Several experimental studies report a depolarizing shift in threshold when
TTX is applied focally at the AIS. However, TTX concentration was very high,
as the goal was to fully block the channels: 500 nM in Kress et al. (2008) and
Kress et al. (2010), 10 µM in Colbert and Johnston (1996) and Palmer and Stu-
art (2006). Combining the data shown in Fig. 4.16 with the threshold equation
(using k = 5 mV), the expected shifts for 500 nM and 10 µM applications would
be 20 and 33 mV, respectively. All these studies report depolarizing shifts in
spike threshold, but the quantitative comparison is compromised by at least
two issues: 1) TTX application is focal, and the spatial extent of blocking is not
tightly controlled (this should reduce the impact of TTX application); 2) spike
onset is used as a proxy for spike threshold, but spike shape is greatly degraded
with high concentrations of TTX (see Fig. 4.17).
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pyramidal neuron receiving myelination from one of these oligo-
dendrocyte processes (Fig. 5A). The average distance of the my-
elin to the axon hillock was 39.9 ! 5.2 !m, and the average length
of this myelin process was 50.2 ! 9.6 !m (n " 6). These results
indicate that the length of the unmyelinated initial segment re-
gion is #40 !m, the length of the first region of myelination is

Figure 3. Impact of local reductions in sodium current on AP properties. A, Example of APs evoked
by somatic current injection during brief (20 ms) low-sodium application to the axon initial segment
(20 !m from the axon hillock) compared with control APs recorded before and after low-sodium
application. Low-sodium extracellular solution led to a significant increase in both AP threshold and
the amplitude of the somatic current step (bottom) required to reach threshold. B, Average shift in
somatic AP threshold and amplitude (C), relative to control during brief application of low-sodium
solution (filled circles) or normal extracellular solution (open circles) to the axon at different locations.
S, Soma. The axon hillock is 0 !m. D, APs evoked by somatic current injection during brief (5–10 ms)
focal application of TTX (10!M) to the axon initial segment (20!m from the axon hillock) compared
with a control AP recorded before TTX application.

Figure 4. Impact of axonal length on AP properties. A, Confocal images of layer 5 pyramidal
neurons (Alexa 568) with axons of the indicated lengths. Note the characteristic bulbous end of
the severed axon. B, Double differentiation of the somatic AP voltage in the neurons illustrated
in A. All neurons exhibited two distinct components, presumably resulting from the separate
charging of the initial segment and the soma. C, The voltage change required to reach AP
threshold (top) and AP amplitude (bottom) measured from threshold in neurons with different
axon lengths (21–968 !m; n " 108). APs evoked by somatic current injection.
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Figure 4.18: Effect on somatic action potential of low sodium application to the
axonal initiation site (from Palmer and Stuart (2006)).

Low Na+ solutions

Another experimental manipulation relevant to the threshold equation is the
application of a low Na+ external solution. The threshold equation predicts
that spike threshold should increase because the reversal potential ENa is lower.
Specifically, the change in reversal potential should be:

∆ENa =
RT

F
log

[Na+]new
[Na+]old

In Fig. 4.18, a low Na+ solution was applied on the axonal initiation site
(here 20 µm from the soma), with concentration 25 mM instead of 150 mM in the
initial extracellular solution (Palmer and Stuart, 2006). The predicted change
in driving force is ∆ENa ≈ −45 mV. With ENa = 70 mV (calculated using
[Na+]i = 7 mM) and V1/2 = −40 mV, we obtain a predicted change in spike
threshold of about 2 mV. The reported change is 4.5 mV on average (the figure
shows an example with larger change). Given that the manipulation is local, we
can expect that this is an underestimation of the true effect with global change of
Na+ concentration. Thus the change is spike threshold is larger than expected.
There is a simple explanation to the discrepancy: changing the extracellular
Na+ concentration also changes the Na+ conductance gNa. Biophysically, it is
clear that gNa should increase when Na+ concentration increases (more ions,
therefore more current). To capture this effect, we need to examine a model
that deals with permeability instead of conductance, which we will do in section
4.4.3. Nonetheless, we observe that lowering extracellular Na+ concentration
does have the expected effect of increasing the spike threshold.

Other ways to modulate Na+ currents

Finally, Na+ currents can be modulated by phosphorylation by kinases (Astman
et al., 1998; Scheuer, 2011; Chen et al., 2008; Wittmack et al., 2005), and by
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the action of neuromodulators, for example serotonin, with associated changes
in spike threshold (Cotel et al., 2013). However, the currently available data do
not allow precise quantification.

4.4.3 The threshold equation with the GHK model

The threshold equation we have derived in section 4.2 was based on a linear
model of the Na+ current (as in the Hodgkin-Huxley model). As this is a
phenomenological model, the relation between conductance and ionic concen-
trations is undetermined. In addition, in some cases it has been shown that
the GHK model is a better model of Na+ currents. This is so in the node of
Ranvier of frog myelinated fibers (Dodge and Frankenhaeuser, 1959; Franken-
haeuser, 1960), and one study also reports it in cortical neurons (Baranauskas
and Martina, 2006). Here we re-analyze the spike threshold using the GHK
model of currents.

We are interested in the value of the Na+ current near spike initiation, that
is, at hyperpolarized voltages. As we have previously seen, the GHK formula
for the current is then approximately:

INa ≈ PNa
F 2[Na+]o

RT
V

The intuition is that at hyperpolarized potentials, most ions flow inward (the
electrical field is directed inward) and so the current should be proportional to
the extracellular concentration of Na+. It should also be proportional to the
electrical field across the membrane, and therefore to the membrane potential
V . Thus we can write:

INa ≈ λNa[Na+]oV

where λNa is a constant that depends only on temperature. Note that λNa[Na+]o
has the dimension of a conductance, and therefore we may define gNa = λNa[Na+]o.
Using the exponential model, the membrane equation is then:

C
dV

dt
= gL(EL − V ) + λNae

(V−V1/2)/k[Na+]oV + I

We can then make the same approximation as previously and replace the
factor V that modulates the exponential by V1/2 (although this is less accurate).
We then obtain the same membrane equation as before for the threshold, with

θ = V1/2 − k log
(λNa
gL

[Na+]o
V1/2

k

)
This updated equation makes the dependence on [Na+]o appear explicitly.

We can now make a meaningful prediction for the experiment with low Na+

application (Palmer and Stuart, 2006). In that study, a solution with 25 mM
instead of 150 mM Na+ was applied locally to the axonal initiation site. The
theoretical prediction is a shift in spike threshold of

∆θ = k log
[Na+]new
[Na+]old

and here, with k = 5 mV, we find about 9 mV. The reported change was 4.5
mV on average. However the application was local, and we may expect that the
threshold shift is smaller than with a global application.
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4.5 What are the conditions for excitability?

4.5.1 How many channels make a cell excitable?

In the sharp model

It is clear that if there are too few Na+ channels, then the cell cannot be
excitable. The minimum required number of channels can be easily calculated
in the sharp model (Fig. 4.10A). Just above V1/2, the membrane current is:

I(V +
1/2) = gL(EL − V1/2) + gNa(ENa − V1/2)

This must be positive for the cell to be excitable. Therefore, the ratio of
Na+ to leak conductance, which we denote p, must be such that20:

p ≡ gNa
gL

>
V1/2 − EL
ENa − V1/2

To give an order of magnitude, we can choose ENa = 70 mV, V1/2 = −30
mV and EL = −70 mV. We then obtain p > 0.4.

In this model, the Na+ conductance can be increased indefinitely without
destabilizing the resting potential. This is so because there is no Na+ current
below V1/2. However, in reality, there is a small but positive Na+ current below
V1/2, and increasing the Na+ conductance should at some point make the resting
potential disappear — the cell spikes and never rests. This effect is captured in
the Boltzmann model21.

In the Boltzmann model

With the Boltzmann model, excitability for slow and fast inputs are not equiv-
alent. Here we choose the definition for fast inputs, but similar calculations can
be carried out with slow inputs. Thus the model is said to be excitable if it has
two stable equilibria; the unstable equilibrium is the spike threshold.

When gNa = 0, there is a single stable equilibrium, the resting potential. If
gNa is increased sufficiently, another equilibrium appears. This event is what
we have previously called a bifurcation (section 4.1.4). We illustrate it on Fig.
4.19, where we show the membrane current I(V ) divided by gL, as a function
of V , for different values of the conductance ratio p = gNa/gL.

We can see that the switch from one equilibrium to two and three occurs
when the excitability curve is tangent to the horizontal axis, that is, I(V ) =
I ′(V ) = 0. This pair of equations can be solved exactly for p (see Appendix
??):

p =
(V − EL)2

(ENa − V )(V − EL)− k(ENa − EL)

where V is a solution to this pair of equations (voltage where the excitability
curve is tangent to the horizontal axis). If we replace V by V1/2, we obtain the
following approximation:

p =
V1/2 − EL

ENa − V1/2 − kENa−EL

V1/2−EL

20Another expression can be derived with the GHK model.
21Note that the exponential model cannot be used for this question because this model is

always excitable as soon as gNa > 0, since the Na+ current is unbounded.
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p

ENa

Figure 4.19: Excitability curve I(V )/gL of the Boltzmann model, where p =
gNa/gL is varied.

With the same values as before and k = 5 mV, we obtain p ≈ 0.48, higher than
in the sharp model, but with the same order of magnitude. A more accurate
approximation can be derived (see Appendix ??), giving p ≈ 0.61.

We can use exactly the same reasoning to derive the maximum number of
channels that allow a stable resting potential. On Fig. 4.19, this corresponds to
one of the upper curves, where the minimum is tangent to the horizontal axis.
This corresponds to exactly the same mathematical conditions, and therefore
the same equation of p as a function of V , but V is not the same. In particular,
V is not close to V1/2 but rather to EL.

To calculate the solution for p, the trick is to first get an estimate of V .
This can be done with the Boltzmann model, but in fact, as we have seen in
section 4.3.3, a good approximation in hyperpolarized voltages is the exponential
model, which is simpler. In the exponential model, the activation function (an
exponential) satisfies m′ = m/k. Therefore the equations I(V ) = I ′(V ) = 0
mean:

EL − V + pm(ENa − V ) = 0

−1 + pm/k(ENa − V )− pm = 0

We obtain pm from the first equation and replace in the second equation.
We then obtain V ≈ EL + k. It follows that maximum conductance ratio is

p =
k

m(ENa − EL)
=

k

(ENa − EL)
e

V1/2−EL

k −1

With the same values as before, we obtain p ≈ 39. Thus, in the Boltzmann
model, the cell is excitable and has a resting potential when 0.6 < p < 39.
Incidentally, we have also found that the spike threshold is always greater than
EL + k, and the resting potential cannot be higher than EL + k. The condition
for the minimum conductance ratio also gives the maximum spike threshold that
can be obtained (see Appendix ??).
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4.5.2 What channel properties are compatible with ex-
citability?

The range of conductance ratios compatible with excitability depends on channel
properties. Under what conditions is this range not empty? For example, if the
activation curve were very smooth (large k), then we might not be able to find
any value of the Na+ conductance that leads to several equilibria. We can
approach this question again with bifurcation theory. We have seen that the
minimum and maximum conductance ratios are such that I(V ) = I ′(V ) = 0.
This pair of solutions disappears at a bifurcation point, where we must then
have I ′′(V ) = 0. In the Boltzmann model, this set of 3 equations leads to
V1/2 ≈ EL + 2k. This has been derived in (Angelino and Brenner, 2007) (see
Appendix ??). Thus, for the cell to be excitable and have a resting potential,
channel properties must satisfy: V1/2 > EL + 2k.

In other words, the activation curve of Na+ channels must be sharp enough.
With EL = −70 mV and V1/2 = −30 mV, we obtain the condition k < 20 mV,
which is met by Na+ channels measured in patch clamp (Fig. 4.11).
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