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Chapter 5

Propagation of action
potentials

In previous chapters, we have considered action potentials produced by an isopo-
tential membrane. In this chapter, we look at how electrical signals, and in
particular action potentials, propagate along neurites. This is modeled by cable
theory. Linear cable theory is described in great detail in Rall (2011), and in
two books: Tuckwell (1988) and Koch (1999).

5.1 Cable theory

5.1.1 The cable equation

Let us consider a neurite (axon or dendrite), which we model as a conductor with
intracellular resistivity Ri (in Ω.m), separated from the extracellular medium
by an insulating membrane. Let us consider a transversal slice at a point x
along the neurite, of width dx. There is a current going through the membrane
(capacitive and ionic), proportional to the width dx, which we denote Im(x)dx.
Note that Im is in A/m and oriented inward (Im > 0 means inward positive
current). There is also a current in the axial direction, which we denote Ia(x)
(in A). The axial current enters the slice as Ia(x) and exits as Ia(x+dx), and by
Kirchoff’s law, the difference must equal the membrane current, which means:

Im =
∂Ia
∂x

Since we consider the intracellular medium as a conductor, the axial current
is determined by Ohm’s law: the axial current flowing between two nearby
points x and x+ dx is

Ia(x) =
Vi(x)− Vi(x+ dx)

ra(x)dx
= − 1

ra

∂Vi
∂x

where Vi is the intracellular potential and ra(x) is the axial resistance per unit
length at point x. Thus we obtain the equation

Im = − ∂

∂x

( 1

ra

∂Vi
∂x

)
1
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Note that this relates the membrane current to the intracellular potential,
and not to the membrane potential. In the following, we will assume that the
extracellular potential is spatially constant along the neurite. This amounts to
assuming that the extracellular medium is conductor, with negligible resistance
(see section 5.1.4 for the case when the extracellular medium is resistive). In
this case, we obtain:

Im = − ∂

∂x

( 1

ra

∂Vm
∂x

)
This is called the cable equation.

5.1.2 The cable equation with constant diameter

We start by assuming that the neurite has a constant section, for example that
it is a cylinder. In this case, the resistance per unit length ra is independent of
x. Therefore the cable equation simplifies as

raIm = −∂
2Vm
∂x2

What is the value of the resistance per unit length ra? Resistance is inversely
proportional to the section area S of the conductor, and therefore:

ra =
Ri
S

where Ri is a proportionality factor called intracellular resistivity, of order 100
Ω.cm.refs+squid If we consider a cylindrical geometry with diameter d, then we obtain:

ra =
4Ri
πd2

The membrane current per unit length Im is related to the membrane current
density Ĩm, per unit of membrane area, by the relation Im = P Ĩm, where P is
the perimeter of the section. For a cylindrical geometry, we obtain

Im = πdĨm

Thus the cable equation with constant diameter is

Ĩm = − d

4Ri

∂2Vm
∂x2

The membrane current density Ĩm is composed of a capacitive current and
a ionic current Iionic:

Ĩm = Iionic − cm
∂Vm
∂t

Therefore the cable equation can be expressed as follows:

d

4Ri

∂2Vm
∂x2

= cm
∂Vm
∂t
− Iionic

We recover the membrane equation of an isopotential model by setting
∂2Vm
∂x2 = 0.
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5.1.3 The cable equation with variable diameter

We now consider the more general case when geometry varies with x. Let us
assume that the neurite has circular sections of varying diameter d(x). First,
we need to calculate the resistance per unit length ra(x).

In this case, the cable equation is:

Im = − ∂

∂x

(πd2
4Ri

∂Vm
∂x

)
=

πd2

4Ri

(∂2Vm
∂x2

+ 2
d′

d

∂Vm
∂x

)
We now calculate the area of a slice of membrane of width dx. If we cut the

neurite through two transversal sections, then we obtain a geometrical shape
called a frustum. We consider that it is a conical frustum, that is, a truncated
cone, with circular end sections of diameter d1 = d(x) and d2 = d(x+ dx). The
surface area of a conical frustum, not including the two circular sections, is

A =
π

2
(d1 + d2)s

=
π

2
(d1 + d2)

√
1

4
(d2 − d1)2 + dx2

where s is the slant height of the frustum (length of a minimal segment con-
necting the two circular sections). With a small dx, we obtain:

A ≈ πd.dx
√
d′2

4
+ 1

Finally, we obtain the cable equation with variable diameter:

1

4Ri

√
d′2

4 + 1

(
d
∂2Vm
∂x2

+ 2d′
∂Vm
∂x

)
= cm

∂Vm
∂t
− Iionic

We can see that we recover the previous cable equation if d(x) varies slowly
(small d′).

5.1.4 The cable equation with a resistive extracellular medium

In reality, the extracellular medium has non-zero resistivity, of about 300 Ω.cm
in grey matter1 (conductivity σ ≈ 0.3− 0.4 S/m (Einevoll et al., 2013)).

Let us consider a neurite with constant section (for example a cylinder),
surrounded by a resistive extracellular medium with geometry that is invariant
along the longitudinal axis of the neurite. Then applying Kirchoff’s law, we
obtain:

Im =
1

rea

∂2Ve
∂x2

where rea is the extracellular resistance per unit length. This quantity depends
both on extracellular resistivity and on the geometry of the extracellular space.

1Note that this corresponds to measurements taken with two distant electrodes in tissue,
which therefore take into account the presence of the tissue. A lower value would be expected
from just the liquid content of the extracellular medium.
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For example, extracellular resistance could be large if cells are tightly packed or
if the axon is immersed in oil, so that only a thin layer of extracellular medium
surrounds the axon.

Combining this equation with the equation relating membrane current and
intracellular potential, we obtain:

(ria + rea)Im = −∂
2Vm
∂x2

This means that the effect of the resistance of the extracellular medium is
simply to increase the axial resistance. Note that this could be more complicated
if the geometry of the extracellular space varied along the axon.

5.2 Passive propagation

5.2.1 The linear cable equation

In this section we only consider passive properties with a linear current-voltage
model, and cylindrical neurites. This makes the cable equation linear:

d

4Ri

∂2Vm
∂x2

= cm
∂Vm
∂t
− gL(EL − Vm)

where gL is leak conductance density and EL is leak reversal potential. To
simplify the notations, we will take EL as the reference potential by defining
V = Vm−EL. We then define rm = 1/gL the specific membrane resistance. We
can then rewrite the membrane equation as follows:

λ2
∂2V

∂x2
= τ

∂V

∂t
+ V

where τ = rmcm is the membrane time constant and

λ =

√
drm
4Ri

has the dimensions of a length and is thus called the characteristic length or
space constant or electrotonic length.

5.2.2 Stationary response

In this section, we look at the stationary response, that is, when the potential
does not change anymore. The cable equation, which is a partial differential
equation, then becomes an ordinary differential equation that depends only on
x:

λ2
d2V

dx2
= V

The solutions of this second-order equation can be expressed as a linear
combination of two independent solutions, for example:

V (x) = Aex/λ +Be−x/λ

or
V (x) = A cosh(x/λ) +B sinh(x/λ)

The choice of the basis of solutions will depend on which one is more conve-
nient for the specific problem to be solved.
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Injecting current in the middle of a cylinder

Let us consider an infinite cylinder with diameter d. We inject some current I at
a point x = 0. This will depolarize the membrane, with an effect that attenuates
with distance. On each half cylinder (x > 0 and x < 0), the stationary cable
equation has a solution of the form

V (x) = Aex/λ +Be−x/λ

Since the potential must be bounded at infinity, it follows that:

V (x) = Ae−x/λ x > 0

= Bex/λ x < 0

We then use continuity at x = 0 to deduce:

V (x) = Ae−|x|/λ

Thus the membrane potential decreases exponentially with distance, with
characteristic length λ, which explains the name that we have given to λ.

What is the value of A? First, the linearity of the problem implies that A
should be proportional to the current I, i.e.:

V (x) = RIe−|x|/λ

where R = V (0)/I is called the input resistance. To determine this resistance,
we will use Kirchoff’s law. The injected current I must equal the difference
between the axial currents just after x = 0 and just before x = 0, that is:

I = Ia(0+)− Ia(0−)

=
1

ra

(
V ′(0−)− V ′(0+)

)
=

2RI

raλ

We conclude that the input resistance is:

R =
raλ

2
=

1

π

√
rmRid

−3/2

This formula is somewhat intuitive: the input resistance is half the resistance
of a characteristic length of cylinder. The half comes from the fact that the
current flows towards both directions (negative and positive x).

Injecting current through one end of a cylinder

Let us consider now a semi-infinite cylinder, with current injected at x = 0.
This current must equal the axial current at x = 0, and it is easy to see that
the potential must again follow:

V (x) = RIe−x/λ

with input resistance R = raλ.
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Finite cylinders

Let us now consider a finite cylinder of length L, with a current I injected at
the end x = 0. We will consider that no current flows through the other end;
this is called a sealed end condition2. These two conditions mean:

V ′(0) = −raI
V ′(L) = 0

For this problem, it will prove more convenient to use the hyperbolic basis
of solutions:

V (x) = A cosh(x/λ) +B sinh(x/λ)

V ′(x) =
B

λ
cosh(x/λ) +

A

λ
sinh(x/λ)

We now use the two boundary conditions to find the two unknowns A and
B:

B = −raλI

A = − B

tanh(L/λ)

Thus the solution is:

V (x) = raλI
( cosh(x/λ)

tanh(L/λ)
− sinh(x/λ)

)
We recover the solution for an infinite half-cylinder when L→∞. The input

resistance is:

R = V (0)/I =
raλ

tanh(L/λ)

5.2.3 Filtering properties

We again consider an infinite cylinder of diameter d, but we now inject a si-
nusoidal current at x = 0. A general approach for this type of problem is to
apply the Fourier or Laplace transform to the cable equation (see for example
Tuckwell (1988)). Equivalently, we can start from the fact that the response of
a linear system to a sinusoidal input is also sinusoidal, possibly with a phase
shift. It is more convenient to look at the problem in the complex domain. That
is, we consider an oscillating input defined by a complex exponential:

I(t) = I0e
iωt

with ω = 2πf , where f is the input frequency. The membrane potential at any
point along the cable must take the same form, that is:

V (x, t) = v(x)eiωt

2the condition V (L) = 0 is called a killed end condition. Note that neither a sealed nor
a killed end is realistic, since capacitive and leak currents should flow through the piece of
membrane at the end.
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We now simply insert this expression into the cable equation, and we obtain:

λ2v′′ = (1 + iωτ)v

This is an ordinary differential equation, whose solution is a linear combina-
tion of two exponential functions e±ax. We find

a = ± 1

λ

√
1 + iωτ

= ± 1√
2λ

(√√
1 + ω2τ2 + 1 + i

√√
1 + ω2τ2 − 1

)
Since the potential must be finite at infinity, we must choose the solution

with a positive real part. If we focus on the amplitude of the response, we then
obtain:

|v(x)| = |v(0)|e−x/λ(f)

where

λ(f) =

√
2√

1 + ω2τ2 + 1
λ

=

√
2√

1 + 4π2f2τ2 + 1
λ

is the characteristic length of voltage attenuation at frequency f . Note that,
to derive this result, we have in fact not used the boundary conditions, but
only the fact that the membrane is stimulated at frequency f . This means that
same result would be obtained if current were injected at one end of a semi-
infinite cylinder, or if one end of a semi-infinite cylinder where voltage-clamped
at frequency f . In all these cases, the voltage attenuates over a distance that is
shorter than the space constant λ.

The input resistance is related to the space constant in the same way as with
a constant current injection:

R =
raλ(f)

2

Thus, there is a smaller input resistance at higher frequency.

High-frequency response

At high frequency, the space constant is

λ(f) ≈ λ√
πfτ

=

√
d

4πRifcm

and the input resistance is:

R =

√
Ri
fcm

(πd)−3/2

Thus at high frequency, the response of the cable does not depend on mem-
brane resistance anymore, only on membrane capacitance.



8 CHAPTER 5. PROPAGATION OF ACTION POTENTIALS

5.2.4 Impulse response

What happens when we deliver an instantaneous shock at x = 0 on a cylindri-
cal membrane, carrying a charge Q0? We are now looking for a time-dependent
solution V (x, t) to the cable equation, which is a linear partial differential equa-
tion. This problem is not trivial but can be solved using a linear transform, for
example the spatial Fourier transform or the Laplace transform. Details can be
found for example in (Tuckwell, 1988). Here we will use a different approach
that is physically more intuitive.

Total charge

Let us consider the total charge Q(t) stored in the membrane capacitance, rel-
ative to the charge at rest. This charge is initially 0, then becomes Q0 at the
time t = 0 of the shock. How does it change over time? This charge changes
because of the transmembrane ionic current, which in the case we consider is
simply the leak current. Thus:

dQ

dt
= −

∫
V

rm

where the integral is over x and rm is the membrane resistance per unit length.
The charge per unit length is q = cmV , where cm is capacitance per unit length.
Therefore:

dQ

dt
= −

∫
q

rmcm
= − Q

τm

This result is independent of the geometry of the neurite, and in particular
is the same as in an isopotential membrane. This gives a new interpretation of
the membrane time constant: τ is the characteristic time of decay of the total
charge over the membrane. The solution of this equation is:

Q(t) = Q0e
−t/τ

General solution

Or: local charge V times
πdcm

Now we look at how this total charge is distributed over the cylinder. The
local charge is q(x, t) = cmV (x, t) and therefore satisfies the same cable equation
as the potential. We look for a solution of the form q(x, t) = Q(t)U(x, t), where∫
U(x, t)dx = 1. Substituting this expression in the cable equation gives:

λ2Q
∂2U

∂x2
= τ

dQ

dt
U + τ

∂U

∂t
Q+QU

Using the differential equation for Q, we then obtain:

λ2
∂2U

∂x2
= τ

∂U

∂t

This is the heat equation or diffusion equation, with a diffusion coefficient
D = λ2/τ . The solution is a Gaussian function of x with standard deviation
σ =
√

2Dt =
√

2t/τλ. In summary, the solution for t > 0 is:

q(x, t) = Qe−t/τ ×G(
x√

2t/τλ
)
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where G is the Gaussian function with unit standard deviation:

G(
x√

2t/τλ
) =

1√
4πt/τλ

e−
τx2

4tλ2

and therefore the potential is:

V (x, t) =
Q

πdcm
e−t/τ ×G(

x√
2t/τλ

)

where we have used cm = πdcm. Some plots of it

Propagation speed

Let us now look at the potential at some distance x of the point of current
injection. The potential first increases then decays. The peak of V (x, t) is
reached at some time t that we shall call the latency L(x). Clearly, latency
increases with |x|. We may then define a speed of passive propagation as the
distance divided by the latency. Let us calculate this speed.

Instead of calculating the peak of V (x, t), we calculate the peak of log V ,
which is simpler and reached at the same time. We have:

log V = − t
τ
− 2π

t

τ
− λ− τx2

4tλ2
+ constant

We set d(log V )/dt = 0 and find:

t =
τ

4
(
√

1 + 4(x/λ)2 − 1)

For large x, this is

t ≈ τx

2λ

and thus the speed is

v =
2λ

τ

Note that this is not the speed at which electricity travels. As we have
previously mentioned, speed of electrical conduction through a ionic solution
has the same order of magnitude as the speed of light. This is merely distance
over peak latency, which has the dimension of velocity.

5.3 Action potential propagation in unmyelinated
axons

Check my documents on
determinants of AP speed
+ biblio5.3.1 Conduction velocity

We consider an infinite cylinder of diameter d. As we have shown in section
5.1.2, the cable equation is:

d

4Ri

∂2V

∂x2
= cm

∂V

∂t
− Iionic
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where Iionic is a current density, expressed per unit of membrane area. We have
previously considered the case when the ionic current is a linear leak current.
Here we assume that it is a voltage-dependent current, as in the Hodgkin-Huxley
model. Thus there are additional state variables that depend on Vm (m, h and
n in the Hodgkin-Huxley model), and are functions of x and t.

We are looking for a wave that propagates at velocity v. This means that
the potential V is a function of x − vt: V (x, t) = U(x − vt). Here U( · ) is the
spatial profile of the propagated action potential. Thus we have:

∂2V

∂x2
= U ′′

∂2V

∂t2
= v2U ′′ = v2

∂2V

∂x2

Thus the cable equation now reads:

d

4Riv2
∂2V

∂t2
= cm

∂V

∂t
− Iionic

This is not a partial differential equation anymore, but an ordinary differen-
tial equation, since all derivatives (including in equations for the state variables)
are with respect to time. We can thus fix a particular value for x and solve this
equation. The same solution will be found at a different x, except with a delay
(x/v). There are two difficulties here: the equations are nonlinear (because of
the equations for m, h and n) and v is unknown. Hodgkin and Huxley used
the following procedure (Hodgkin and Huxley, 1952). First, a guess value for
v is inserted in the equation, which is numerically integrated starting from the
resting potential. This typically gives a solution that diverges to +∞ when v is
too small, or −∞ when v is too large. The value of v is then adjusted and the
procedure is repeated until v converges to some value. By this method, Hodgkin
and Huxley (1952) found a predicted conduction velocity of 18.8 m/s, close to
the empirically measured value of 21.2 m/s.

Although there is no closed form for the conduction velocity as a function
of biophysical parameters, it is possible to obtain a scaling relation with axon
diameter d. Let us assume that the following differential equation:

α
d2V

dt2
= cm

dV

dt
− Iionic

has a bounded solution, obtained with the aforementioned procedure, for a
unique value of α. Then we have the following relationship:

v =

√
d

4Riα

or in other words:

v ∝
√

d

Ri

In particular, v ∝
√
d. Note that to obtain this result, we have implicitly

assumed that surfacic conductance densities are constant. This scaling relation
also implies two other facts: 1) the time course t 7→ V (x, t) is invariant with
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velocity and thus with diameter; 2) the spatial profile x 7→ V (x, t) expands with
velocity and thus with

√
d (broader profile for thicker axons).

measurements of Rushton
and others

Also consistent with this result is the observed decrease in conduction ve-
locity when the squid axon is immersed in oil, increasing Ri (Hodgkin, 1939)3.

5.3.2 Shape of the propagated action potential

In an isopotential model, the initial rising phase of the action potential is de-
termined by the opening of Na+ channels. In the propagated action potential,
it is the axial current that is responsible for the initial rising phase. It is then
possible to calculate this initial shape by neglecting voltage-dependent currents
(Taylor, 1963):

d

4Riv2
d2V

dt2
= cm

dV

dt
+ gLV

where gL is leak conductance density, and we have set the resting potential at 0.
This is a linear differential equation, and thus it can be solved. We first rewrite
it as

a
d2V

dt2
= τ

dV

dt
+ V

where

a =
dRm
4Riv2

and Rm = 1/gL. We find two exponential solutions of the form eγt, with

γ =
τ ±
√

4a+ τ2

2a

With the empirical values in the squid axon used in the Hodgkin-Huxley
model, we find 4a ≈ 1.5 ms2 and τ ≈ 11 ms2. Therefore, one of the two values
is close to 0 and the other is

γ ≈ τ

a
=

4Ricmv
2

d

With the same values, we find γ ≈ 8.7 ms−1. In fact, we have seen that v
depends on the other parameters, so that

γ ≈ cm
α

where α depends on conductance densities and channel properties. Thus the
initial shape of the propagated action potential does not depend on geometry
or intracellular resistivity, only on channel properties and densities.

5.4 Action potential propagation in myelinated
axons

5.4.1 Myelin

Show voltage imaging
data3More precisely, it increases the extracellular resistance per unit length because of the thin-

ner layer of water around the membrane, and this resistance plays the same role as intracellular
resistance, see section 5.1.4.
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Myelin is a substance surrounding the axon of certain nerve cells, in general
large axons of vertebrate neurons, which provides electrical insulation. It is pro-
duced by Schwann cells in the peripheral nervous system, and oligodendrocytes
in the central nervous system.

Let us start by analyzing the effect of myelin on passive electrical properties.
We denote cm and rm the specific capacitance and specific resistance of myelin.
For a cylindrical axon, the capacitance per unit length of one layer of myelin
of diameter di is Ci = πdicm. When arranged in series, inverse of capacitances
add. Therefore, the total capacitance of n layers of myelin satisfies:

1

C
=

1

πcm

n−1∑
i=0

1

di

If the myelin layers are equally spaced by ∆, then

di = din + ∆i

where din = d0 is the inner diameter and dout = dn−1 is the outer diameter of
the axon. It follows that

1

C
≈ 1

π∆cm

∫ dout

din

1

d

=
1

π∆cm
log
(dout
din

)
The resistance per unit length of one myelin layer of diameter d is rm/(πd).

Resistances in series add, therefore we find that the total resistance per unit
length is

R =
rm
π∆

log
(dout
din

)
It follows that the membrane time constant is unchanged by myelination:

τ = RC = rmcm. Does the space constant λ depend on myelination? To
calculate the space constant, we first note that the resistance per unit length
R corresponds to an effective resistance per axonal membrane area of r∗m =
R× πdin. Then we use the formula for λ:

λ =

√
dr∗m
4Ri

=
din
2

√
rm
Ri∆

log
(dout
din

)
Optimal myelination

How many myelin layers should there be? The formula for the space constant
shows that adding layers, i.e., increasing the outer diameter of the axon, in-
creases the space constant, which means better conduction. On the other hand,
it also increases the volume occupied by the axon. We may then ask: for a given
volume occupied by the axon, i.e., for a given value of dout, what is the optimal
number of layers, or equivalently, what is the value of din that maximizes the
space constant?

If dout is constant, then the optimization is equivalently with respect to the
ratio x = din/dout. Maximizing λ is the same as maximizing λ2, and therefore
when dout is constant this is equivalent to maximizing the following function:

f(x) ≡ −x2 log x
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This function reaches its maximum at:

x =
1√
e

and therefore the optimal ratio between inner and outer diameter of the axon
is din/dout = 1/

√
e ≈ 0.6. It turns out that this value is close to experimental

measurements. Put this
With this optimal ratio, the expression for the space constant simplifies as

follows:

λ =
din
2

√
rm

2Ri∆

=
dout

2

√
rm

2eRi∆

We find in particular that the space constant is proportional to diameter,
instead of the square root of diameter as with unmyelinated axons.

5.4.2 Ranvier nodes

In myelinated axons, voltage-gated channels are placed at discrete locations
called nodes of Ranvier. These are short unmyelinated segments of axon. Thus
the internode segments are passive, and the nodes of Ranvier are active. This
leads to a particular mode of conduction called saltatory conduction, where the
action potential attenuates in the internodes, and is regenerated at the nodes.

As we have seen in section 5.4.1, the space length λ in the internodes is pro-
portional to axon diameter, assuming optimal myelination. This suggests that
internode length should be proportional to axon diameter. empirical measurementsLet us examine the
currents at a node. We assume that a node is isopotential. The transmembrane
current In at the node must equal the difference between the two axial currents
coming from the neighboring internodes. How do these axial currents scale with
axon diameter? The axial current is

Ia =
1

ra

∂V

∂x

where ra is axial resistance per unit length. In units of the space length, this is:

Ia =
1

λra

∂V

∂x̄

where x = λx̄. Since λ ∝ d and ra ∝ d−2, we find that the axial current is
proportional to d. Therefore, the transmembrane current at the node should be
proportional to d. If channel densities are constant, this means that the length
of a node must be constant, independent of axon diameter4.

With these scaling relations, we obtain equations that are invariant with
axon diameter when expressed in units of the internode space length λ. It
follows that conduction velocity is proportional to d. Since conduction velocity
in unmyelinated axons is proportional to

√
d, it follows that there is a diameter

above which myelination increases conduction velocity.

4Here d implicitly refers to din, but since we only consider proportionality relations, we
might equivalently refer to dout.
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5.5 Extracellular potential and current circula-
tion

5.5.1 The line source approximation

Electrostatic theory stipulates that a point source of current I(t) in a resistive
medium generates an electrostatic potential V equal to:

V =
1

4πσ

I

r

where σ is the conductivity of the medium in S/m (inverse of resistivity) and r
is the distance to the source.

The line source approximation consists in approximating an axon (or den-
drite) as a line of current sources, where each section of membrane is a source
of current. Thus the extracellular potential Ve equals:

Ve = − 1

4πσ

∫
Im(x)

r(x)
dx

where x is the linear coordinate along the axon and the integral runs over the
entire axon. Here Im(x) is the total membrane current per unit length, including
capacitive and ionic currents. With the convention that we have chosen (Im > 0
means inward current), a section dx of membrane produces a current −Im(x)dx
towards the extracellular space. As we have seen in section 5.1, the membrane
current is related to the intracellular potential Vi by the cable equation. The
extracellular potential can then be expressed as:

Ve =
1

4πσ

∫
1

r(x)

∂

∂x

( 1

ra

∂Vi
∂x

)
dx

We may replace Vi by the membrane potential Vm is the resistivity of the
extracellular medium is low.

5.5.2 Extracellular signature of a propagated action po-
tential

We now consider an action potential propagating along an unmyelinated cylin-
drical axon, and we measure the extracellular potential next to the axon, at
some position x = 0. If r(0) ≈ 0, then 1/r(x) diverges at x = 0 and therefore
the extracellular potential essentially depends on the membrane current near
x = 0. Therefore:

Ve ∝
1

4πσra

∂2Vm
∂x2

where we have assumed that the extracellular medium has low resistivity5. For
a propagated action potential of speed v, we then have:

Ve ∝
1

4πσra

1

v2
∂2Vm
∂t2

5It can be shown that Ve is proportional to log h, where h is the distance of the measuring
extracellular electrode to the axon
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Figure 5.1: Circulation of current during a propagated action potential. Top,
membrane potential as a function of distance x along the axon. Bottom, circu-
lation of current around the axon. There is an error in one

the arrows (bottom, first
one to the left)

We note that since v ∝
√
d and ra ∝ 1/d2, we have Ve ∝ d: the extracel-

lular potential is proportional to the axon diameter. The overall shape of the
extracellular potential can be derived from the shape of the intracellular action
potential. First, there is a steep rising phase where the potential accelerates:
∂2Vm
∂t2 > 0; after the inflexion point, the potential decelerates, corresponding

to ∂2Vm
∂t2 < 0; then there is another inflexion point in the repolarization phase,

after which ∂2Vm
∂t2 > 0. Thus, the extracellular potential should consist of three

phases: a positive peak, a negative peak and a (smaller) positive peak. This is
indeed observed in extracellular recordings near axons. Show example, eg Tovar

et al 2017

5.5.3 Current circulation

How does current circulate during an action potential? Figure 5.1 shows the
membrane potential along an axon where an action potential propagates in the
direction of increasing x. Axial current is proportional to −∂V/∂x, therefore it
changes sign at the minimum and maximum of the action potential. This axial
current must be matched by an opposite extracellular current. The transmem-
brane current is proportional to −∂2V/∂x2, therefore it changes sign at inflexion
points of the action potential. It is inward in the accelerating phases of the ac-
tion potential, and outward in the decelerating phases. These remarks lead to
the current loops displayed in Figure 5.1 (the major ones being the second and
third sets of loops).
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