
 

Page 1/10                                                                                
 

 
 

TITLE of the PROJECT: Binaural cues and spatial hearing in ecological environments 
 
PRINCIPAL INVESTIGATOR Name:             Romain Brette                                                      Degree(s): PhD 

Position: Research Director Institution: UPMC Department: Institut de la Vision 
Address: 17, rue Moreau, 75012 Paris, France 

Phone: 0153462536 Fax:  E-mail: romain.brette@inserm.fr 
  
ABSTRACT 
 
Spatial hearing underlies our ability to localize sound sources in our environment, and to listen in noisy conditions 
(the “cocktail party effect”), which are both degraded by hearing loss. This project addresses fundamental aspects 
of our understanding of spatial hearing in humans, by focusing on the analysis of ecological situations. Indeed, for 
methodological reasons, research on spatial hearing has focused largely on simplified experimental configurations, 
for example by considering point sources and by suppressing reflections on the ground. Contextual elements such 
as source width and ground reflections strongly affect the performance of leading models of sound localization, but 
the significance of this fact is difficult to assess because relatively little is known on human performance in 
ecological situations. This project aims at filling this gap by empirically measuring the distribution of binaural cues 
and human sound localization performance in ecological situations, in particular by including aspects that have 
been little explored, such as physical sound sources (vibrating objects as opposed to sounds played on speakers) 
and reflective grounds (grass, pavement). Thus, we propose to analyze the acoustical properties of natural hearing 
environments, and the influence of these properties on spatial hearing. This analysis will allow us to interpret the 
large body of experimental results in binaural psychophysics in an ecological context. The specific aims are: 
a) to measure binaural cues with physical sources (objects, as opposed to point sources) in ecological conditions 
(free field with natural surfaces, e.g. grass), and in particular to empirically estimate the distribution of binaural 
cues for a given source location; 
b) to measure human localization performance in ecological situations, and in particular to measure the sensitivity 
to various aspects of the ecological context (e.g. nature of the ground). 
c) to understand how much of human binaural psychophysics can be explained by natural statistics of binaural 
sounds (using Bayesian models), as opposed to specific physiological mechanisms and constraints (e.g. limits of 
phase locking of the auditory nerve). 
By investigating the aspects of binaural hearing that are critical in ecologically relevant situations, the project is 
expected to provide crucial information for the design of auditory prostheses and implants. 
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RESEARCH PLAN 
 
A. Specific aims 
 
The goal of this project is to investigate spatial hearing in ecological situations, using acoustical recordings, 
human psychophysics and theoretical analysis. The specific aims are: 
a) to measure binaural cues with physical sources (objects, as opposed to point sources) in ecological 
conditions (free field with natural surfaces, e.g. grass), and in particular to empirically estimate the 
distribution of binaural cues for a given source location; 
b) to measure human localization performance in ecological situations, and in particular to measure the 
sensitivity to various aspects of the ecological context (e.g. nature of the ground). 
c) to understand how much of human binaural psychophysics can be explained by natural statistics of 
binaural sounds, as opposed to specific physiological mechanisms and constraints (e.g. limits of phase 
locking of the auditory nerve). 
 
B. Background and Significance 
 
Spatial hearing relies on a variety of acoustical cues, in particular binaural cues: interaural differences in 
intensity and time (IID and ITD, respectively). These are influenced by source location, but also by 
contextual elements, such as sound spectrum, early reflections on the ground, background noise, source 
width and directionality, posture. Specifically, our recent work indicates that: 
1) There are substantial frequency-dependent variations in ITD in human and animal HRTF at a fine scale, 
which imply large variations of ITD with sound spectrum and differences between phase and envelope ITD 
[1]. These variations are not noise but rather reflect the individual geometry of the listener’s head and 
body. 
2) The presence and properties of the ground produce early reflections that impact binaural cues in a 
systematic way [2] (Fig. 1A). These reflections are too early to be suppressed by the precedence effect 
and instead result in interferences. This comes in addition to the effect of walls in rooms [3]. 
3) Body posture can impact binaural cues, as assessed from HRTF computed from 3D models [4,5] (Fig. 
1B). 
 

 
Figure 1. A, ITD v. frequency for one particular source direction in a spherical head model, with grounds 
of different absorption properties, showing interference patterns [2]. B, ITD v. frequency for all source 
directions from the back in a 3D model of a cat with the head straight (left) or turned (right) [4]. 
 
Work by other investigators has shown that properties of the sound source can also affect binaural cues. 
In particular, real sounding objects, in contrast to omnidirectional point sources typically used in laboratory 
experiments, have a width (for example a car) and a directivity. Both can have an impact on binaural cues 
[6]. 
 
These contextual elements make the computational task of sound localization challenging, and this is 
indeed one of the main difficulties that sound localization algorithms in the engineering field aim at solving. 
Consistently, we have shown that these contextual elements also strongly affect the performance of 
leading models of sound localization [7,8]. It seems plausible that biological sound localization systems, in 
animals and humans, are adapted to the complexity of ecological environments and thus are robust to 
contextual elements. Some indications of this robustness can be found in psychophysical studies showing 
that lateral localization is not very sensitive to level [9], sound duration [10] or spectro-temporal envelope 
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[11–13]. Robustness could then provide an important constraint on models of spatial hearing. However, 
there is currently little empirical data available regarding both the binaural cues produced by sound sources 
in ecological situations and the performance of humans in localizing sounds in such situations. Indeed, for 
methodological reasons, most experiments have been designed to minimize these contextual elements, 
in particular by 1) minimizing reflections, on walls but also on the floor (but see [3]), 2) playing artificial 
sounds (in particular clicks and noise bursts) on speakers. 
 
This project aims at filling this gap by empirically measuring the distribution of binaural cues and human 
sound localization performance in ecological situations, in particular by including aspects that have been 
little explored, such as physical sound sources (vibrating objects as opposed to sounds played on 
speakers) and reflective grounds (grass, pavement). It will thus produce a database of binaural recordings, 
labelled with source location and measured human performance, which will be made available to the 
community. 
 
Secondly, since the mapping from binaural cues to location is uncertain due to contextual elements, the 
task of sound localization implies some degree of statistical inference. This aspect is typically not included 
in leading biological models of sound localization, but research in other sensory modalities has shown that 
Bayesian inference can explain and unify many psychophysical results [14]. In this context, Bayesian 
inference consists in estimating the most likely source location, given the binaural cues presented and the 
natural distribution of binaural cues. The estimation of natural distributions of binaural cues might allow us 
to unify a large body of binaural psychophysical results under a general theory. 
 
C. Preliminary studies 
 
We have gathered and analyzed preliminary binaural recordings with physical sources in a quiet park. The 
subject wore binaural microphones, while the experimenter, placed at predefined positions, produced 
sounds with a woodblock, a rain stick, and speech. This preliminary analysis has shown a few interesting 
aspects, many of which were expected but motivate further analysis of such data sets: 

- Even in quiet environments, there is large variability in binaural cues across time in a given 
recorded sound, which is presumably due to background noise. 

- As expected, average ITD varies with frequency. 
- ITD tends to be unreliable in high frequency, while ILD is unreliable in low frequency. This supports 

duplex theory, and might lead to specific predictions regarding the trade-off between ITD and ILD, 
based on cue reliability. 

- Generally, estimating source direction from a single binaural recording is difficult, while it is trivial 
in quiet artificial conditions. 

 
Once the direction-dependent distribution of binaural cues is known, it is possible to derive a Bayesian 
model based on maximum likelihood estimation. The model outputs the most likely source direction that 
has produced a given set of binaural cues. For example, a classical psychophysical experiment to study 
how ITD and ILD are perceptually combined into sound lateralization is the measurement of the “binaural 
trading ratio” [15]: a tone (or band-passed click) is presented with a given ITD and the subject changes 
the ILD so that the sound is perceived in the center; the binaural trading ratio is the quantitative relation 
between the two cues. The trading ratio in µs/dB is higher in low frequency than in high frequency. The 
Bayesian model provides an interpretation and a prediction for this trading ratio, by proposing that each 
pair of ITD and ILD values produces a lateralization that corresponds to the source direction that is most 
likely to have produced these values, given the natural variability of these cues. We have used a synthetic 
data set produced with simulation of rooms and Kemar HRTFs by T. May [16] to make predictions on an 
binaural trading experiment. Fig. 2 shows the most likely azimuth of the source for any given pair of ITD 
and ILD, at two different frequencies. We can see that the pairs of values that are mapped to azimuth 0° 
(green) fall on a line with two different slopes. Expressed in µs/dB, the slope is higher at the lower 
frequency than at the higher one, consistent with experiments. Thus, the binaural trading ratio observed 
in psychophysical experiments may reflect optimal inference of sound direction from uncertain binaural 
cues. 
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Figure 2. Most likely source azimuth (color-coded) for a given pair of ITD and ILD values, at two different 
frequencies. Predictions produced using a synthetic data set of binaural recordings [16] (T. May, personal 
communication). 
 
D. Research Design & Methods 
 
The project consists of three parts: 1) producing a data set of binaural recordings in a variety of ecological 
situations; 2) measuring sound localization accuracy in human subjects in ecological situations; 3) making 
a Bayesian model of sound localization and comparing it with psychophysical data. 
 
1) Binaural recordings in ecological situations 
 
The goal of this part is to gather a database of binaural recordings with sources at specified locations, in 
different contexts. Part of the initial work in this project is to refine the methodology so as to maximize the 
throughput and quality of the procedure. We will start from the following design. 
 
Subjects 
We will select 10 normal hearing subjects (young adults, <30 years), with <10 dB hearing loss between 
250 and 8000 Hz. This selection will be important for the psychophysical study (part 2). We will take 
morphometric measurements of each subject: head width and height. 
 
Recording conditions 
The subject will wear binaural microphones. She will be sitting on a stool with a seatback and adjustable 
height; we will consider two vertical positions. To maintain the head at fixed position during the session, a 
visual target will be placed in front of the subject, at eye level. To have recordings with different postures, 
two other conditions will be considered, with the visual target at ±30° relative to the subject’s body. 
 
Environments 
The recordings will take place in several environments. In this project, we do not address the problem of 
separating distinct sound sources, but rather that of natural background noise. For this reason, we will 
select quiet environments. The initial selection is: a park; a forest; a quiet urban environment. These 
environments have in common to have a reflective ground, with different acoustical properties, in contrast 
with typical laboratory recordings. 
 
Sound sources 
Sound sources will be placed at predetermined positions. Markers will be put on the ground, arranged in 
two circles around the subject, at 2 and 5 meters, at 15° increments (or 5°, see below). We will consider a 
variety of sound sources producing sounds at marked positions: 

- A speaker (on a stand mounted on wheels) playing clicks, facing the subject’s position. This will be 
used for control and comparison. 

- Footsteps: the experimenter stamps at a fixed position. The interest is that the resonating object is 
the ground, which should be acoustically very different from a point source. 

- Speech: the experimenter reads a sentence written in advance. Here the body of the experimenter 
resonates. 

- Rain stick: this object produces sustained sounds with large acoustical width. 
- Movie clapper: this produces a strong transient sound. 
- Paper rustling: this produces a type of broadband noise but with a physical source. 

 
The experimenter will move to a position, produce the sound repetitively for about 10 s, then move to the 
next position. This should take no more than 15 seconds per condition. Independently of the recording 
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session, the manipulation of each source will be recorded on video camera, and the vertical position of the 
source will be measured. 
 
The total number of conditions listed above is large: 6 postures (3 head angles times 2 vertical positions), 
3 environments, 48 positions, 6 sources, totaling 5184 conditions. This corresponds to about 22 hours of 
recording, not including breaks. To reduce this duration, we will not include all possible combinations. 
Instead, we will produce the following sets, for each of the 3 environments: 

- A high spatial resolution set with 5° increments at two distances (144 positions), a single posture, 
a single type of sound (claps). Total: 144 conditions or 36 min. 

- A set with diverse sources: 15° increments at fixed distance on a half-circle (13 positions), single 
posture, 5 sources (all sources excluding the one used in the first set). Total: 65 conditions or 16 
min. 

- A set with diverse postures: 15° increments at fixed distance on a half-circle (13 positions), 1 
source, 5 postures (excluding the posture already measured in other sets). Total: 65 conditions or 
16 min. 

In total, we obtain 274 distinct conditions, corresponding to just over 1h. Allowing for regular breaks, we 
obtain three sessions of about 1h30 (one per environment) for each subject. We plan to include 10 
subjects. This will produce in total 8220 binaural recordings. 
 
Analysis 
 
The set of all recordings with associated data (positions, environments, morphometric measurements, etc) 
will be uploaded to a public repository. This requires segmenting the audio recording of each session into 
waveforms corresponding to each condition. We will simply use the power in the recording to delimit the 
conditions automatically. We will verify that no segmentation error has occurred by: 

- counting the number of delimited segments and comparing it with the number of conditions; 
- identifying segments of abnormal durations and manually checking them. 

 
Each recording is about 10 s long and therefore contains a large amount of binaural information. Indeed, 
at 1000 Hz, 10 s corresponds to 10 000 cycles and therefore potentially 10 000 data points for IPD and 
ILD at each frequency. In practice, this number will be smaller depending on the sounds, because some 
are transient (eg repeated claps), and some have power in restricted regions of the spectrum (eg speech). 
Nonetheless, it will be possible to obtain a distribution of IPD and ILD for each condition and frequency. 
 
Further analysis is described in part 3. 
 
2) Psychophysics of sound localization in ecological situations 
 
We will then measure sound localization performance (both accuracy and precision) in 10 human subjects, 
in the same contexts as used for the binaural recordings. Half of the subjects will be the same as those for 
binaural recordings. 
 
The design of these experiments must be quite different from that of the recordings for methodological 
reasons. First, the subjects do not wear binaural microphones. Second, presentation of the sounds must 
be randomized. The methodology will be adapted from published experimental protocols [17]: 

- Head position is continuously tracked with an electromagnetic head tracker. 
- The subject is blindfolded. At the beginning of the trial, the subject’s head is at 0°. 
- The sound is played by the experimenter, as in part 1. The subject is instructed to remain still until 

the sound has finished playing, then turn her head towards the sound source. 
- While the experimenter moves to the next position, predetermined with a random order, the subject 

wears a noise-cancelling headphone and listens to a masking noise, so as to cover the sounds 
produced by the experimenter while moving. 

The sounds will also be recorded with a microphone placed near the subject so as to check the acoustical 
properties of the sound offline (in particular duration and level). To aid the experimenter, numbered panels 
will be placed next to the source positions, the number corresponding to the rank in the randomized 
sequence of positions. Since the subject indicates the source position by turning the head, only front 
positions will be considered. 
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The presented sound will be shorter than in part 1 (just one presentation), so the duration of the trial will 
be mostly determined by the sequence of actions. We estimate that each condition should take about 20 
s. Accuracy and precision can be estimated from slope and standard deviation of the regression line to 
the data (target angle vs. response angle) [17]. This requires a large enough number of data points; we 
will aim for about 100 data points (similar to [17]). The set of all front positions spaced by 5° angles 
produces 37 data points. We will therefore consider sets of 3 random permutations of these positions, so 
as to produce 111 data points, taking about 37 min to complete. As this is quite long, the set of 
psychophysical measurements will be smaller than the set of binaural recordings. We will consider a single 
posture and distance, and two sources used in random order (roving). This produces 222 data points, 
taking about 1h15 min to complete. With breaks, each session will last about 1h30-1h45. This will be 
repeated in each of the 3 environments. 
 
The database will also be uploaded to a public repository. The data will be analyzed with standard methods 
to evaluate precision and accuracy (e.g. [9,17,18]). 
 
3) Bayesian model of sound localization 
 
Model 
From our recordings, we will estimate the frequency-dependent distribution of interaural cues, conditioned 
on source location. An example is shown on Fig. 3, where the joint distribution of ILD and ITD is shown in 
4 narrow frequency bands, calculated from simulations of sources in reverberating rooms, placed at 
azimuth 0° [16]. These distributions show that there is uncertainty in ILD and ITD for a given source 
location. It also shows that in high frequency, the ITD distribution has several peaks corresponding to 
identical IPD values. Conversely, several source locations are consistent with a given pair of ITD and ILD 
values. Thus, statistical inference is required to determine the likely position of the source. This can be 
done with Bayes’ theorem, which, in the context where all source locations are equally likely, stipulates 
that the probability that the source is at a given location given the cues is proportional to the probability of 
observing those cues at that location (P(location | cues) µ P(cues | location)). This has been used in the 
engineering field to derive an efficient sound localization algorithm, using distributions of cues obtained 
from simulations [16]. Here we will use our measured distribution of cues to compare the predictions of 
the Bayesian model to psychophysical data. 
 

 
Figure 3. Joint distribution of ITD and ILD in 4 narrow frequency bands, calculated from simulations of 
sources in reverberating rooms, placed at azimuth 0° [16]. 
 
The model will be developed along the following lines: 

- For each condition, we analyze ITD and ILD distributions in different frequency bands, as done in 
[16]. 

- Since our data are obtained at discrete points (spaced by 5 or 15°), we will need to interpolate 
between to obtain a spatially continuous parametrization of ITD/ILD distributions. This will be 
possible once ITD/ILD distributions are fitted to parametrized distributions (e.g. mixture of 
Gaussians in [16]). 
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configurations, where the BRIRs were synthesized by using
the room simulation package developed by [31]. This software
package combines a database of head-related transfer functions
(HRTFs) [32] measured in anechoic conditions, with room
reflections simulated according to the image source model [33].
To create the target and the interfering source signals, utter-
ances of male speakers which were randomly selected from
the TIMIT database [34] were convolved with the simulated
BRIRs. Throughout the multiconditional training phase, the
frequency-dependent absorption coefficients of the room were
chosen to yield a constant reverberation time s,
in order to introduce the same amount of uncertainty for all
gammatone channels. Note that only one level of reverberation
was used to train the localization model. To obtain a reliable
estimate of the target position, it is essential that the prob-
abilistic model is trained only with binaural features which
are associated with the target source. Thus, four criteria were
employed to select the frames where the binaural features
are dominated by the target source. Note that the last three
criteria are monitored in all gammatone channels indepen-
dently, whereas the first criterion is based on the signal prior
to gammatone analysis. Firstly, an energy-based voice activity
detector (VAD) was used to monitor the activity of the target
source, and, a frame was considered to be silent and excluded
if the energy level drops by more than 40 dB below the global
maximum. Second, frames were considered for training only
if the target source was stronger than the interfering source.
This analysis compared the energy of the target source to
the energy of the interfering source after spatialization. The
signals of the left and the right ear were added prior to energy
computation. Third, frames were removed when the height of
the primary peak in the cross-correlation function was less then
a threshold , assuming that the associated binaural cues are
dominated by the room reflections. This third criterion was
motivated by the fact that the amplitude of the cross-correlation
reveals information about the ratio between the direct sound
and the room reflections, which becomes low when the signals
at the left and the right ear are dominated by reflections. The
threshold was set to by inspection, which still con-
siders frames with low correlation between the binaural signals
to incorporate the uncertainty of binaural cues resulting from
adverse acoustic conditions into the training procedure. The
fourth criterion removed frames from the training set, if the
maximum of the cross-correlation function corresponded to
one of the most lateral time lags .1 For those time
lags, it is assumed that the corresponding ITD of ms is
outside the plausible range for the human head. Based on these
four criteria, about 50% of the frames were removed.

B. Binaural Feature Space

As already pointed out, the ITD and the ILD cues contain
complementary information about the source position, and can
therefore be combined in a two-dimensional binaural feature
space

(6)

1Valid for a sampling frequency of 44.1 kHz.

Fig. 1. Binaural feature space computed for a target source at 0 azimuth at
different gammatone filter center frequencies under reverberation condition
( s). The number of clusters increases along the ITD feature
dimension due to the ambiguous nature of the cross-correlation function at
high frequencies.

where represents the number of observations for gammatone
channel . This joint feature space of ITDs and ILDs is shown
in Fig. 1 for a speech source at 0 azimuth using the multicon-
ditional training. Each dot represents an observation of the bin-
aural feature space for a single frame within a specific gamma-
tone channel. The receiver (KEMAR head) was placed in the
middle of the room, whereas the source was positioned at a ra-
dial distance of 1.5 m with respect to the receiver. The binaural
cues were simulated in a room measuring 5.1 7.1 3 m with
a reverberation time of s.

It can be observed in Fig. 1 that the interdependency of ITDs
and ILDs results in complex patterns. At higher frequencies,
where the wavelength is smaller than the diameter of the head,
the ITD information becomes ambiguous. This effect is re-
flected by the number of distinct clusters in the binaural feature
space, which systematically increases with the gammatone
center frequency. The spread of the clusters can be related to
the reverberation and the presence of an interfering source.
Considering a target source at 0 azimuth in anechoic condi-
tions without an interfering source, the distribution of ITDs and
ILDs would be very narrow and hardly any side peaks would
be observed.

To estimate the position of a sound source from a set of bin-
aural cues, the complex pattern of the binaural feature space is
learned by a probabilistic model. In [20], the pdf of the binaural
feature space depending on the sound source azimuth was mod-
eled by a histogram technique. In that study, two histograms
were computed: one analyzing the binaural feature space for
both target and interfering sources, and the second for the ob-
servations related to the target source only. The relation be-
tween these two histograms was used to derive the probability
of a region which is dominated by the target source. The bin
size of the histogram is the result of a tradeoff between the
pdf resolution and the amount of data required for a sufficient
training of the model. Furthermore, a threshold needs to be set
for the histogram in order to control the potential effect of insuf-
ficient training on the pdf, which may occur for certain binaural
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- Different versions of the model will be produced, depending on what is considered known or 
unknown. For example, the model may take into account the knowledge of the type of source, or it 
may consider it as a source of uncertainty. 

 
Prediction of accuracy and precision in ecological situation 
The model will then be used to produce artificial behavioral responses to signals presented at different 
target azimuths. This will be done in two ways (two version of the Bayesian model): 

- Maximum likelihood: the response to a signal with a given set of cues it the source location that 
has maximum probability of generating those cues. 

- Sampling: the response to a signal with a given set of cues is a source location drawn at random 
with probability equal to the probability of the location to generate those cues. 

These two versions will likely produce the same accuracy (gain), but not the same precision, the latter 
being less precise than the former. 
 
We will then compare the outputs of the model with measured psychophysical performance (part 2). We 
expect that precision is lower near ±90° because ITD and ILD are less sensitive to azimuth near ±90°. We 
also expect that the gain is lower than 1 (i.e. the behavioral range of responses is compressed relative to 
the full range of targets), because target responses are distributed within ±90°. 
 
Comparison with previously published psychophysical data 
 
We will then produce predictions of the Bayesian model for different situations investigated in the 
psychophysical literature, in particular: 

- Just-noticeable differences (JND): in the sampling version of the model, sounds produced at two 
nearby locations, or with two slightly different ITD or ILD, cannot be discriminated not because the 
inputs are noisy, but because the distributions of inferred of source locations are very similar in the 
two cases. Thus, predicted JNDs can be calculated from the model for different situations (different 
frequencies, JND in ITD, ILD, azimuth). 

- High-frequency limit of IPD discrimination: in the same way, the model produces a prediction for 
the frequency above which IPD does not produce significant information about source location. 
This should be related but not equal to the frequency corresponding to a wavelength equal to head 
width. 

- ITD-ILD trading: as already explained previously, the model produces predictions about the ITD-
ILD trading ratio at different frequencies [15]. 

- Duplex theory [20]: the model predicts the amount of information about sound location provided by 
ITD and ILD as a function of frequency, which is expected to be in favor of ITD in low frequency, 
and in favor of ILD in high frequency (see preliminary results). Predictions can be compared 
quantitatively with published results by replicating the experimental design with the model. 

 
This list is not exhaustive; for example the model could be extended to address frequency integration, with 
the concepts of centrality and straightness [19]. 
We anticipate that some predictions of the Bayesian model will match human psychophysics, and some 
will not. For example, it is possible that the limit of IPD discrimination is determined by the limit of phase 
locking, and not by acoustical factors. This investigation will allow us to delineate the range of auditory 
spatial behavior that can be explained by statistical inference in an uncertain auditory world, and which 
ones require other, possibly physiological, explanations. 
 
E. References 
 
1.  Benichoux V, Rébillat M, Brette R. On the variation of interaural time differences with frequency. J 
Acoust Soc Am. 2016;139: 1810. doi:10.1121/1.4944638 
2.  Gourévitch B, Brette R. The impact of early reflections on binaural cues. J Acoust Soc Am. 2012;132: 
9–27. doi:10.1121/1.4726052 
3.  Shinn-Cunningham BG, Kopco N, Martin TJ. Localizing nearby sound sources in a classroom: 
binaural room impulse responses. J Acoust Soc Am. 2005;117: 3100–3115.  
4.  Rébillat M, Benichoux V, Otani M, Keriven R, Brette R. Estimation of the low-frequency components 
of the head-related transfer functions of animals from photographs. The Journal of the Acoustical Society 
of America. 2014;135: 2534–2544. doi:10.1121/1.4869087 
5.  Benichoux V, Fontaine B, Karino S, Joris PX, Brette R. Frequency-dependent time differences 



 

Page 8/10              

between the ears are matched in neural tuning. eLife. 2015; 10.7554/eLife.06072. 
doi:http://dx.doi.org/10.7554/eLife.06072 
6.  Mason R, Brookes T, Rumsey F. Frequency dependency of the relationship between perceived 
auditory source width and the interaural cross-correlation coefficient for time-invariant stimuli. The 
Journal of the Acoustical Society of America. 2005;117: 1337–1350. doi:10.1121/1.1853113 
7.  Goodman DF, Benichoux V, Brette R. Decoding neural responses to temporal cues for sound 
localization. eLife. 2013;2: 2:e01312. doi:10.7554/eLife.01312 
8.  Brette R. On the interpretation of sensitivity analyses of neural responses. J Acoust Soc Am. 
2010;128: 2965–2972. doi:10.1121/1.3488311 
9.  Sabin AT, Macpherson EA, Middlebrooks JC. Human sound localization at near-threshold levels. 
Hearing Research. 2005;199: 124–134. doi:10.1016/j.heares.2004.08.001 
10.  Vliegen J, Opstal AJV. The influence of duration and level on human sound localization. The 
Journal of the Acoustical Society of America. 2004;115: 1705–1713. doi:10.1121/1.1687423 
11.  Hofman PM, Van Opstal AJ. Spectro-temporal factors in two-dimensional human sound 
localization. J Acoust Soc Am. 1998;103: 2634–2648.  
12.  Yost WA, Loiselle L, Dorman M, Burns J, Brown CA. Sound source localization of filtered noises 
by listeners with normal hearing: A statistical analysis. The Journal of the Acoustical Society of America. 
2013;133: 2876–2882. doi:10.1121/1.4799803 
13.  Yost WA, Zhong X. Sound source localization identification accuracy: Bandwidth dependencies. 
The Journal of the Acoustical Society of America. 2014;136: 2737–2746. doi:10.1121/1.4898045 
14.  Kersten D, Mamassian P, Yuille A. Object Perception as Bayesian Inference. Annual Review of 
Psychology. 2004;55: 271–304. doi:10.1146/annurev.psych.55.090902.142005 
15.  Harris GG. Binaural Interactions of Impulsive Stimuli and Pure Tones. The Journal of the 
Acoustical Society of America. 1960;32: 685–692. doi:10.1121/1.1908181 
16.  May T, van de Par S, Kohlrausch A. A Probabilistic Model for Robust Localization Based on a 
Binaural Auditory Front-End. IEEE Transactions on Audio, Speech, and Language Processing. 2011;19: 
1–13. doi:10.1109/TASL.2010.2042128 
17.  Makous JC, Middlebrooks JC. Two-dimensional sound localization by human listeners. J Acoust 
Soc Am. 1990;87: 2188–2200.  
18.  Middlebrooks JC, Green DM. Sound Localization by Human Listeners. Annu Rev Psychol. 
1991;42: 135–159. doi:10.1146/annurev.ps.42.020191.001031 
19.  Trahiotis C, Stern RM. Across-frequency interaction in lateralization of complex binaural stimuli. J 
Acoust Soc Am. 1994;96: 3804–3806.  
20.  Wightman FL, Kistler DJ. The dominant role of low-frequency interaural time differences in sound 
localization. J Acoust Soc Am. 1992;91: 1648–1661. doi:10.1121/1.402445 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

AGIR POUR L’AUDITION, 2017                                               Page 9/10                                          

 
PRINCIPAL INVESTIGATOR’S BIOGRAPHICAL SKETCH 
 
 
Name & Degree: Romain Brette, PhD            Position: DR2 INSERM, Institut de la Vision 

 

 
 
A. Education, Training, Positions & Honors 
 

Positions 

2014- DR2 INSERM (senior research scientist), Team leader “Computational neuroscience of 
sensory systems” in the Vision Institute (Paris). 

2008-2014  Assistant professor, ENS (Paris), Cognitive Science Department, Audition team. 

2005-2008  Assistant professor, ENS (Paris), Computer Science Department, Odyssée team (INRIA). 

2004 Postdoc with Alain Destexhe (CNRS Gif-Sur-Yvette) and Wulfram Gerstner (EPFL, 
Switzerland) in Computational neuroscience 

 

Education and training 

2016   Certification for animal experimentation (level I), INSERM. 

2009   Habilitation (HdR) in cognitive science (ENS Paris). 

2000-2004  PhD in Computational neuroscience (UPMC, Paris). 

1999-2000  DEA in Applied mathematics (ENS Cachan, France). 

1998-1999  MSc in Neural network theory (King’s College, London). 

1997-2000  Magistère in Computer science (ENS Lyon). 

  
Honors 

2009 ERC Starting Grant 

2009 Institut Universitaire de France (junior member) 

 
B. Peer-Reviewed Publications  

 
Selected list of 10 publications relevant to this project: 

 
1. Zheng Y and Brette R (2017). On the relation between pitch and level. Hearing Research doi: 

10.1016/j.heares.2017.02.014. 
2. Bénichoux V, Rébillat M, Brette R (2016). On the variation of interaural time differences with 

frequency. JASA, 139 (4), 1810-1821. 
3. Benichoux V, Fontaine B, Karino S, Joris PX, Brette R (2015). Neural tuning matches frequency-

dependent time differences between the ears. eLife 4, e06072. 
4. Laudanski J, Zheng Y, Brette R (2014). A structural theory of pitch. eNeuro. DOI: 

10.1523/ENEURO.0033-14.2014. 
5. Rébillat M, Benichoux V, Otani M, Keriven R, Brette R (2014). Estimation of the low-frequency 

components of the head-related transfer functions of animals from photographs. JASA, 135, 
2534. 

6. Goodman DFM, Benichoux V, Brette R (2013). Decoding neural responses to temporal cues for 
sound localization. eLife 2:e01312. 

7. Fontaine B, Benichoux V, Joris PX and Brette R (2013). Predicting spike timing in highly 
synchronous auditory neurons at different sound levels. J Neurophysiol 110(7):1672-88. 

8. Gourévitch B and Brette R (2012). The impact of early reflections on binaural cues. JASA 
132(1):9-27. 

9. Fischer BJ, Steinberg LJ, Fontaine B, Brette R, Peña JL (2011). Effect of instantaneous 
frequency glides on ITD processing by auditory coincidence detectors. PNAS 108(44): 18138-
18143. 



 

AGIR POUR L’AUDITION, 2017                                               Page 10/10                                          

10. Fontaine B and Brette R (2011). Neural development of binaural tuning through Hebbian learning 
predicts frequency-dependent best delays. J Neurosci 31(32):11692–11696. 

 


