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1. Lifeless	brains	
	

1.1. The	brain,	in	theory	
In	modern	mainstream	culture,	both	popular	and	scienti6ic,	the	brain	is	a	sort	of	computer,	a	machine	
that	processes	information.	It	acquires	data	in	the	form	of	sensory	signals,	encodes	them	into	some	
electrical	 format,	 then	processes	 the	data	with	neural	 algorithms.	 It	 broadcasts	 the	 information	 to	
specialized	processing	modules:	the	visual	cortex	for	visual	processing,	the	hippocampus	for	memory	
storage	and	retrieval,	 the	prefrontal	cortex	for	decision	making	and	planning.	Eventually,	 it	outputs	
motor	commands	to	the	muscles.	Obviously,	the	brain	is	not	a	conventional	computer	with	transistors,	
hard	 drives	 and	 USB	 ports,	 but	 a	 “biological	 computer”	 optimized	 by	 evolution.	 The	 goal	 of	
neuroscience,	then,	is	to	“reverse	engineer”	the	brain,	to	understand	its	functional	organization	and	
biological	implementation.	
All	these	concepts	are	borrowed	from	the	engineering	domain.	This	source	of	inspiration	predates	the	
era	of	computers.	In	the	17th	century,	brains	were	likened	to	hydraulic	mechanisms;	in	the	19th	century,	
the	nervous	system	was	a	telegraph	(Cobb,	2021,	2020).	In	much	of	the	20th	century,	the	brain	was	a	
computer	applying	formal	rules	on	mental	symbols.	Nowadays,	the	brain	might	be	a	neural	network,	
but	the	kind	that	engineers	run	on	massive	computers	with	graphics	cards:	a	vector	of	values	updated	
by	series	of	matrix	multiplications,	with	parameters	tuned	to	minimize	a	formally	de6ined	error.	In	fact,	
the	 modern	 neuroscience	 literature	 simultaneously	 embraces	 all	 of	 those	 engineering	 concepts:	
neurons	are	mechanisms	 (like	hydraulic	machines)	 that	 communicate	with	codes	 (like	 telegraphs),	
they	 compute	 (like	 computers)	 with	 parameters	 tuned	 by	 learning	 algorithms	 (like	 formal	 neural	
network	models).	
Theoretical	neuroscience,	the	activity	of	building	mathematical	models	of	the	nervous	system,	heavily	
borrows	from	engineering	theories:	computer	science,	signal	processing,	data	analysis,	optimization,	
information	 theory,	 control	 theory.	 In	 fact,	 the	main	 sub6ield	 of	 theoretical	 neuroscience	 is	 called	
computational	neuroscience,	which	aims	at	understanding	how	(not	whether)	neurons	compute.	
Engineering	concepts	have	indeed	been	very	fruitful	in	understanding	the	logic	of	living	beings,	and	of	
nervous	systems	in	particular.	For	example,	telegraph	theory	has	been	used	to	develop	the	biophysics	
of	action	potential	propagation	in	the	1950s	by	Hodgkin,	Huxley,	Katz	and	colleagues	(Hodgkin,	1964),	
as	axons	share	similarities	with	electrical	wires.	In	fact,	the	theory	of	electrical	propagation	in	neurons	
is	 traditionally	 called	 “cable	 theory”	 (Rall,	 2011).	 Optimization	 principles	 have	 been	 shown	 to	 be	
relevant	 to	 understand	 the	 structure	 of	 living	 organisms	 (Rosen,	 1967)	 and	of	 nervous	 systems	 in	
particular	 (Sterling	 and	 Laughlin,	 2017).	 Indeed,	 the	 structure	 of	 living	 organisms	 appears	 to	 be	
particularly	ef6icient	at	various	functions	that	are	especially	important	for	the	survival	of	the	organism,	
such	 as	 harvesting	 and	 saving	 energy.	 This	 is	 why	 biology	 has	 in	 turn	 been	 an	 inspiration	 for	
engineering.	
But	it	is	one	thing	to	borrow	relevant	concepts	from	engineering	to	understand	brains,	and	another	
entirely	to	claim	that	brains	actually	are	engineered.	Many	general	views	on	mind	and	consciousness	
are	indeed	based	on	a	strict	identi6ication	between	brains	and	engineered	devices	(mostly	computers).	
For	example,	since	we	are	computers	and	computers	are	not	conscious,	then	consciousness	must	be	an	
illusion	(eliminativism).	Or	conversely,	since	we	are	computers	and	we	are	conscious,	computers	must	
be	 conscious	 after	 all,	 so	 consciousness	 may	 actually	 be	 everywhere	 to	 different	 degrees	
(panpsychism).	If	 intelligence	is	 just	an	input-output	mapping	6itted	on	large	amounts	of	data,	then	
surely	 with	 more	 data	 and	 computing	 power,	 “arti6icial	 intelligence”	 will	 soon	 outrun	 human	
intelligence,	 leading	 the	human	 species	 to	 extinction	or	 slavery	 (an	 event	 called	 the	 “technological	
singularity”).	 If	 minds	 are	 algorithms,	 then	 we	 should	 be	 able	 to	 upload	 minds	 in	 a	 computer	
simulation,	inde6initely	extending	our	lives	(transhumanism).	In	fact,	we	might	already	be	living	in	a	
simulation	right	now,	without	knowing	it.	If	not,	since	mind	simulation	would	allow	us	to	create	an	
astonishing	 number	 of	 new	 happy	 human	 lives,	 we	 should	 make	 all	 possible	 efforts	 to	 ensure	 it	
happens	(longtermism).	
Yet,	if	we	were	to	explicitly	ask	a	modern	neuroscientist	whether	the	brain	is	actually	an	engineered	
device,	 she	would	certainly	strongly	object.	Brains	are	not	 the	result	of	 intelligent	design.	This	 is	a	
religious	view	of	life	that	has	been	discredited	by	Darwinism.	Why	then	are	we	to	“reverse-engineer”	
brains,	if	brains	were	not	engineered	in	the	6irst	place?	
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This	terminology	is	typically	excused	by	adding	that	brains	are	engineered	by	evolution,	not	by	God.	
But	Darwin’s	insight	is	precisely	that	evolution	is	not	a	case	of	engineering.	Engineering	is	the	use	of	
knowledge	 to	 solve	 technical	problems.	 It	presupposes	an	external	mind	 that	plans	and	assembles	
machines	according	 to	a	preexisting	goal.	But	evolution	has	no	goals,	plans	or	knowledge;	 in	other	
words,	it	is	not	an	engineer.	
Thus,	living	organisms	are	not	really	engineered.	Therefore,	they	are	not	really	machines,	which	are	
engineered	objects,	and	brains	are	not	really	computers,	which	are	kinds	of	machines.	Of	course,	there	
are	features	of	machines	and	computers	that	are	shared	by	living	organisms	and	brains,	which	is	why	
engineering	concepts	can	be	relevant	 in	biology.	But	 if	 the	 idea	that	we	are	 the	result	of	 intelligent	
design	is	to	be	scandalous	to	a	modern	scientist,	then	surely	this	should	at	least	make	some	difference	
to	the	way	we	conceive	brains?	
It	is	the	main	aim	of	this	book	to	explore	these	differences,	in	particular	in	the	context	of	making	models	
of	the	brain.	It	appears	indeed	that,	in	mainstream	neuroscience	and	cognitive	science,	the	idea	that	
we	are	not	engineered	is	simultaneously	an	extremely	important	opinion	to	hold	publicly	as	well	as	a	
theoretically	 insigni6icant	 fact.	 Hillary	 Putnam,	 a	 major	 philosophical	 6igure	 of	 cognitivism,	 put	 it	
explicitly:	“we	could	be	made	of	Swiss	cheese	and	it	wouldn’t	matter”	(Putnam,	1975).	
To	set	the	stage,	I	will	brie6ly	outline	the	main	modern	theoretical	frameworks	to	think	about	brains	
and	cognition,	starting	with	computationalism.	
	

1.2. Computationalism	
Computationalism	holds	that	cognition	is	a	form	of	computation,	seen	as	the	manipulation	of	formal	
symbols	with	rules.	Brains	are	said	to	implement	such	computation,	where	symbols	are	represented	by	
the	 state	 of	 some	 neurons,	 while	 brain	 processes	 change	 neural	 states	 in	 such	 a	 way	 that	 the	
corresponding	 symbols	 are	 changed	according	 to	 the	 formal	 rules	of	 the	 computation.	Usually,	 the	
relevant	states	are	believed	to	be	the	6iring	activity	of	neurons	(how	many	action	potentials	they	6ire	
per	second).	As	we	will	see	in	chapter	8,	this	is	problematic	because	activity	is	not	a	state,	let	alone	a	
computational	 state.	 Unorthodox	 computational	 accounts	 propose	 instead	 that	 symbols	 are	
represented	by	stable	molecules	such	as	polynucleotides	(Gallistel,	2017).	Regardless	of	the	physical	
basis	 of	 computational	 symbols,	 it	 is	 the	 computation	 that	 matters	 for	 cognition,	 not	 its	
implementation.	This	doctrine	is	known	as	functionalism	(see	Zahnoun	(2023)	for	a	critique).	Brains	
merely	support	computations;	how	they	do	so	is	largely	irrelevant	to	understand	cognition.	
This	functionalist	perspective	comes	from	the	fact	that	a	computer	is	a	machine,	and	what	matters	for	
the	behavior	of	a	machine	is	the	functional	speci6ication	of	the	components,	not	so	much	their	material	
basis.	An	electric	car	is	still	a	car,	because	the	electric	motor	produces	a	rotating	motion	transferred	to	
the	wheels,	even	though	it	works	differently	from	a	combustion	engine.	Accordingly,	computationalism	
relies	on	a	distinction	between	hardware	(the	brain)	and	software	(the	mind).	Cognition	is	de6ined	at	
the	 level	 of	 algorithms,	 while	 neurons	 only	 implement	 those	 algorithms.	 Thus,	 biological	
implementation	is	secondary	for	the	understanding	of	cognition:	the	mind	can	run	on	any	material	
support,	as	long	as	the	functional	organization	of	computational	states,	identi6ied	to	mental	states,	is	
preserved.	Thus,	with	some	imagination,	the	brain	could	be	made	of	Swiss	cheese.	
Computationalism	 developed	 in	 reaction	 to	 behaviorism,	 which	 was	 the	 dominant	 conceptual	
framework	 about	 brains	 in	 the	 6irst	 half	 of	 the	 20th	 century.	 Behaviorism	 saw	 behavior	 as	 nested	
re6lexes	 adjusted	by	 experience,	 strengthening	or	weakening	 associations.	But	 as	 early	 cognitivists	
pointed	out,	behavior	is	highly	structured,	goal-directed,	and	appears	to	depend	on	abstractions	rather	
on	the	details	of	proximal	stimuli,	just	like	computations.	This	is	obviously	so	in	human	reasoning,	but	
it	is	also	a	well-documented	feature	of	animal	behavior.	For	example,	bees	can	recognize	whether	two	
objects	are	the	same	or	different	(Giurfa	et	al.,	2001)	and	can	count	up	to	four	(Dacke	and	Srinivasan,	
2008).	Many	species	such	as	ants	can	return	to	their	nest	in	a	straight	path	after	foraging	(Wehner,	
2020),	 meaning	 that	 they	 implicitly	 integrate	 their	 own	 displacement	 –	 an	 ability	 called	 dead	
reckoning.	This	does	not	seem	to	be	possible	by	the	mere	association	of	physical	cues.	
While	 the	 cognitivist	 critique	 of	 behaviorism	 is	 relevant,	 it	 was	 hardly	 new.	 Merleau-Ponty,	 a	
phenomenologist	philosopher,	already	pointed	out	in	The	Structure	of	Behavior	(1942)	that	behavior	
is	made	of	actions,	not	reactions.	An	action	is	performed	by	an	agent	with	certain	goals,	and	therefore	
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it	depends	both	on	the	organism’s	internal	state	and	on	some	abstract	features	of	the	situation	–	e.g.,	
whether	 the	 given	 pattern	 of	 light	 is	 identi6ied	 as	 a	 source	 of	 food.	 Organisms	 do	 not	 respond	
automatically	to	proximal	stimuli.	Rather,	behavior	is	anticipatory:	actions	are	taken	as	a	function	of	
their	expected	consequences.	Computation	is	indeed	also	directed	towards	a	goal,	which	is	its	result	
(the	thing	that	we	compute),	but	that	is	hardly	surprising,	given	that	computation	is	a	kind	of	behavior	
–	 the	kind	we	 try	 to	 emulate	 in	 computers.	However,	 the	 converse	assertion,	 that	 all	 behavior	 and	
cognition	are	computational,	does	not	follow,	as	we	will	discuss	in	more	detail	in	chapter	4.	In	the	same	
way,	it	seems	that	we	can	store	and	retrieve	memories	just	like	a	computer,	but	it	is	the	computer	that	
was	built	to	mimic	some	features	of	human	memory	–	indeed,	the	word	“memory”	originates	from	the	
mental	domain,	not	the	engineering	domain.	It	does	not	follow	that	the	computer	literally	remembers	
what	you	wrote	when	you	open	a	text	6ile.	
Computationalism	led	to	the	development	of	symbolic	arti6icial	intelligence,	also	known	as	“good	old-
fashioned	 arti6icial	 intelligence”	 (GOFAI),	 in	 particular	 expert	 systems,	 which	 implemented	 logical	
inference	on	a	base	of	rules	gathered	from	experts.	Those	systems	made	spectacular	progress	in	the	
1960s	to	1970s,	raising	high	hopes,	as	recounted	by	Mitchell	(2021).	For	example,	in	1960,	Herbert	
Simon	predicted	that	“machines	will	be	capable,	within	twenty	years,	of	doing	any	work	that	a	man	can	
do”.	Skeptics,	such	as	the	philosopher	Hubert	Dreyfus	(1978),	explained	that	experts	do	not	actually	
rely	on	rules:	it	is	beginners	who	use	rules	to	guide	their	learning	process.	This	unpleasant	rebuttal	
was	dismissed,	but	expert	systems	were	eventually	abandoned	in	the	1980s.	
Despite	the	failure	of	these	approaches,	the	perspective	introduced	by	computationalism	has	remained	
dominant:	 cognition	 is	 a	 form	 of	 computation,	 and	 neurons	 encode	 symbols	 used	 by	 the	 brain	 to	
compute.	
One	of	the	dif6iculties	encountered	by	symbolic	arti6icial	intelligence	was	with	perceptual	tasks,	such	
as	identifying	an	object.	To	address	this	dif6iculty,	a	very	different	approach	was	introduced,	which	did	
not	use	symbolic	rules:	connectionism.	
	

1.3. Connectionism	
The	precursor	of	all	arti6icial	neural	network	models	is	the	binary	neuron	model	of	McCulloch	and	Pitts	
(1943).	In	that	model,	the	neuron	is	seen	as	either	active	or	inactive,	symbolized	by	0	or	1,	a	feature	
inspired	by	 the	 all-or-none	 law	of	 neural	 excitation.	 It	 receives	 inputs	 from	other	 neurons,	 and	 its	
output	activity	is	calculated	as	follows:	take	the	weighted	sum	of	the	activity	of	input	neurons	(weights	
are	called	synaptic	weights),	and	output	1	if	the	sum	exceeds	a	threshold	(otherwise	0).	This	makes	the	
neuron	implement	a	logical	function	with	n	inputs	and	1	output.	One	can	then	build	more	complicated	
logical	functions	by	connecting	neurons	together.	In	fact,	McCulloch	and	Pitts	demonstrated	that	any	
logical	function	from	n	inputs	to	m	outputs	can	be	implemented	with	an	appropriately	wired	neural	
network.	Thus,	the	article	was	entitled:	“A	logical	calculus	of	the	ideas	immanent	in	nervous	activity”.	
Philosophically,	the	model	of	McCulloch	and	Pitts	stands	with	classical	computationalism:	the	state	of	
each	neuron	represents	a	symbol,	and	the	model	implements	propositional	calculus.	Mental	states	are	
made	of	logical	propositions.	But	in	the	1950s	and	1960s,	Frank	Rosenblatt	started	to	apply	it	to	visual	
tasks,	 under	 the	 name	 “perceptron”	
(Rosenblatt,	1962;	Figure	1-1).	There,	 the	
input	variables	represented	light	intensity	
at	photoreceptors,	the	output	represented	
the	recognition	of	an	object,	and	crucially,	
the	 synaptic	 weights	 were	 learned	 by	
association.	The	model	did	not	implement	
logical	 inference	 anymore.	 Instead,	
Rosenblatt	interpreted	the	model	“in	terms	
of	 probability	 theory	 rather	 than	 symbolic	
logic”	 and	 called	 his	 approach	
“connectionist”	(Rosenblatt,	1958).	
Despite	an	initial	interest	in	connectionism,	it	was	abandoned	a	few	years	later	in	favor	of	symbolic	
approaches,	 when	 Minsky	 and	 Papert	 (1969)	 demonstrated	 the	 fundamental	 limitations	 of	 the	
perceptron.	When	 expert	 systems	were	 abandoned	 in	 the	 1980s,	 there	was	 a	 renewed	 interest	 in	

	
Figure	1-1.	Rosenblatt’s	perceptron	(from	Rosenblatt,	1962).	
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connectionism,	triggered	by	the	design	of	ef6icient	learning	algorithms	for	multilayer	perceptrons,	such	
as	 backpropagation	 (Rumelhart	 et	 al.,	 1986),	 still	 in	 use	 in	 modern	 arti6icial	 neural	 networks.	
Connectionism	fell	out	of	fashion	again	in	the	arti6icial	intelligence	community	in	the	1990s,	in	favor	of	
more	ef6icient	 statistical	 learning	algorithms,	 such	as	 support	vector	machines	 (Cortes	and	Vapnik,	
1995).	It	was	revived	in	the	2010s,	when	improvements	in	model	design	as	well	as	computing	power	
and	data	availability	led	to	impressive	results	in	different	areas,	such	as	image	processing	(LeCun	et	al.,	
2015).	
According	to	connectionism,	cognition	arises	 from	the	 interaction	of	many	neurons,	seen	as	simple	
stereotypical	 input-output	 devices.	 Learning	 consists	 in	 modi6ications	 of	 the	 association	 strength	
between	 pairs	 of	 neurons,	 summarized	 by	 a	 single	 parameter.	 Thus,	 connectionism	 is	 explicitly	
associationist,	and	therefore	conceptually	closer	to	behaviorism	than	to	computationalism.	Cognition	
is	not	logical	calculus	anymore,	but	a	form	of	calculation	more	akin	to	linear	algebra.	Furthermore,	the	
activity	 of	 neurons	 in	 inner	 layers	 is	 not	 associated	 to	 mental	 symbols	 anymore,	 but	 rather	 to	
intermediate	computational	variables.	
These	differences	 remain	a	major	 source	of	mutual	 criticism	between	 the	 two	approaches.	On	one	
hand,	(symbolic)	computational	models	are	essentially	incapable	of	dealing	with	real	sensory	inputs,	
such	as	images.	On	the	other	hand,	connectionist	models	have	great	dif6iculties	dealing	with	relational	
tasks,	such	as	deciding	whether	an	 image	contains	 two	 identical	objects	 (Kim	et	al.,	2018),	or	with	
compositional	tasks	(Dziri	et	al.,	2023).	
Despite	 these	 differences,	 computationalism	 and	 connectionism	 are	 conceptually	 related	 in	 many	
ways.	 Both	 see	 cognition	 as	 a	 form	 of	 computation,	 consisting	 in	 applying	 a	 series	 of	 elementary	
operations	to	an	input.	This	means	in	particular	that	cognition	is	an	input-output	process,	which	takes	
data	 and	 maps	 it	 to	 a	 response.	 This	 view	
preserves	 the	 behaviorist	 concept	 of	 the	
stimulus:	 behavior	 is	 made	 of	 responses	 to	
stimuli,	 except	 that	 there	 is	 now	 “cognition”	
between	perception	and	action	–	the	“classical	
sandwich”	model	of	cognition,	as	Susan	Hurley	
put	 it	 (Hurley,	 2001;	 Figure	 1-2).	 Indeed,	 in	
standard	 experimental	 sensory	 neuroscience,	
neural	activity	is	almost	invariably	reported	as	
a	response	to	stimuli,	and	activity	unrelated	to	
the	stimulus	 is	called	“noise”	–	as	opposed	to	
the	autonomous	activity	of	the	organism.	This	
is	obviously	the	experimenter’s	perspective.	
The	 way	 computations	 are	 performed	 differs	 greatly	 between	 classical	 computationalism	 and	
connectionism.	Indeed,	 in	a	deep	neural	network	model	that	identi6ies	faces,	neurons	of	the	hidden	
layers	do	not	represent	anything	in	particular.	This	is	why	a	common	complaint	about	modern	arti6icial	
networks	(deep	learning	in	particular)	is	that	they	are	not	explainable:	we	cannot	easily	explain	what	
they	do	because	the	results	of	intermediate	calculations	are	not	meant	to	be	interpretable	as	symbols.	
However,	 neurons	 of	 the	 output	 layer	 do	 represent:	 in	 a	 face	 recognition	 model,	 their	 activity	
represents	 the	occurrence	of	 a	particular	 face.	Therefore,	 the	output	 remains	 symbolic,	 just	 like	 in	
classical	computationalism.	Furthermore,	since	these	output	symbols	must	be	the	inputs	to	some	other	
computational	 networks,	 for	 example	 those	 responsible	 for	 uttering	 the	 name	 of	 the	 face,	
connectionism	still	generally	commits	to	a	symbolic	view	of	cognition,	both	for	 inputs	and	outputs.	
There	are	still	“neural	representations”	or	“neural	codes”	of	mental	content,	in	the	form	of	the	activity	
of	speci6ic	neurons	or	groups	of	neurons,	but	not	all	neurons	encode;	only	those	at	the	input	and	output	
of	designated	cognitive	functions.	Thus,	classical	connectionism	has	a	somewhat	confused	view	of	the	
symbolic	nature	of	cognition.	
Connectionism	also	preserves	the	hardware/software	distinction	at	the	heart	of	computationalism.	In	
this	case,	software	is	the	set	of	synaptic	weights.	Neurons	are	input-output	devices	with	a	few	knobs,	
but	are	otherwise	rigidly	speci6ied.	This	is	a	key	requirement	of	modern	connectionist	models,	where	
the	tuning	of	synaptic	weights	relies	on	formal	differentiation	of	neural	input-output	functions.	

	
Figure	1-2.	The	classical	sandwich	model	of	cognition	(from	
Hurley,	2001).	
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Thus,	although	connectionism	describes	cognition	in	terms	of	the	operation	of	“neurons”,	the	biological	
nature	of	neurons,	or	of	the	organism,	plays	exactly	no	role,	just	like	in	classical	computationalism.	The	
facts	that	the	organism	lives,	and	that	brains	develop	(as	opposed	to	being	assembled)	are	peculiarities	
of	“implementation”	with	no	theoretical	signi6icance.	
Because	 biology	 is	 just	 implementation,	 both	 computationalism	 and	 connectionism	 start	 from	 the	
cognitive	problem	being	solved,	and	then	try	to	6igure	out	how	the	brain	might	solve	it.	This	approach	
is	typically	called	“top-down”	–	the	top	being	the	mind.	This	is	of	course	in	line	with	the	engineering	
mindset:	6irst,	we	describe	what	the	machine	should	do;	second,	we	design	its	functional	organization;	
third,	 we	 implement	 the	 functional	 description	 by	 assembling	 components	 with	 the	 right	
speci6ications.	This	is	essentially	what	David	Marr,	a	pioneer	of	computational	neuroscience,	proposed	
as	the	methodology	for	modeling	brains	(Marr,	1982):	start	with	the	“computational	level”,	the	task	
that	 the	model	 is	 supposed	 to	 achieve;	 then	 describe	 the	 “algorithmic/representational	 level”,	 the	
algorithm	that	solves	the	task,	at	an	abstract	level;	and	6inally	worry	about	the	“implementation	level”,	
how	the	algorithm	is	realized	in	the	brain.	
Of	course,	this	methodology	makes	perfect	sense	for	arti6icial	intelligence,	since	in	that	case,	we	are	
indeed	engineering	 the	models.	 In	neuroscience,	an	alternative	kind	of	methodology,	which	brands	
itself	as	more	empirical	(“data-driven”),	consists	in	measuring	the	different	components	of	the	brain	
as	well	as	the	way	they	are	assembled.	This	kind	of	approach	is	often	called	“bottom-up”.	It	is	in	fact	
also	inspired	from	engineering,	because	parts	of	a	living	organism	are	conceived	as	parts	of	a	machine.	
	

1.4. Bottom-up	neuroscience	
An	example	of	 a	bottom-up	approach	 in	neuroscience	 is	 the	Human	Brain	Project,	which	aimed	at	
simulating	an	entire	brain	based	on	systematic	large-scale	measurements	of	the	properties	of	neurons	
and	synapses.	 In	 this	 case,	 the	neuron	models	are	not	 classical	 connectionist	models	with	abstract	
variables	 such	 as	 the	 “activity”	 of	 a	 neuron,	 but	 biophysical	models	 taking	 the	 form	 of	 dynamical	
systems	with	measurable	variables,	 such	as	 the	membrane	potential.	Those	models	were	obtained	
from	electrophysiological	measurements	in	animals.	In	the	Human	Brain	Project,	the	measurements	
were	statistical:	models	of	typical	neurons,	and	average	connectivity	between	brain	areas.	
Other	bottom-up	projects	rely	on	more	systematic	measurements.	For	example,	a	technical	approach	
known	as	connectomics	aims	at	systematically	measuring	the	detailed	synaptic	connections	between	
neurons	in	an	entire	region	or	in	the	whole	brain.	The	graph	of	connections	is	called	the	connectome.	
According	 to	 its	 strongest	 supporters,	 connectomics	 should	 bring	 a	 decisive	 contribution	 to	 the	
understanding	of	brains	and	cognition.	For	example,	Morgan	and	Lichtman	(2013)	assert	that	“it	might	
not	be	so	unrealistic	to	hope	that	in	staring	into	such	a	map	we	might	get	a	glimpse	of	the	human	mind”,	
and	Seung	(2012)	claims	that	you	literally	are	your	connectome.	Of	course,	this	is	simply	the	expression	
of	connectionism	in	its	most	radical	form:	cognition	is	essentially	speci6ied	by	the	connections	between	
neurons.	
Thus,	 bottom-up	 approaches	 also	 often	 embrace	 some	 variation	 of	 connectionism,	 as	 well	 as	 the	
general	framework	of	computationalism,	in	particular	its	terminology.	That	is,	brains	are	described	as	
implementing	 computations,	 processing	 information,	 and	 so	 on.	 But	 in	 contrast	 with	 top-down	
approaches,	models	of	the	brain	are	established	by	measurement,	independently	of	what	the	brain	is	
supposed	 to	 achieve.	 Function	 is	 assumed	 to	 follow	 from	 those	measured	 properties.	 The	 implicit	
assumption	is	that,	like	in	a	machine,	the	properties	of	parts	are	independent	of	the	system	in	which	it	
is	 embedded	 (the	 “top”),	 and	 of	 what	 that	 system	 does.	 First	 come	 the	 parts	 with	 their	 speci6ied	
properties,	and	then	they	are	assembled	according	to	a	plan.	
But	of	course,	this	analogy	with	machines	is	fragile,	because	in	a	living	organism,	parts	always	grow	
within	 a	 functional	 system,	 and	 so	 the	 relation	 between	 “bottom”	 and	 “top”	 is	 circular,	 not	
unidirectional.	As	we	will	see	in	chapter	3,	this	explains	why	the	hopes	of	bottom-up	approaches	have	
not	been	realized	so	far.	
	

1.5. Brains	beyond	engineering	
The	neurocomputational	patchwork	
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In	 practice,	models	 of	 neuroscience	 (as	 opposed	 to	 arti6icial	 intelligence)	 do	not	 strictly	 adhere	 to	
either	 computationalism	 or	 connectionism	 in	 their	 classical	 form,	 but	 borrow	 concepts	 from	 both	
approaches.	In	the	same	way,	modeling	is	rarely	purely	top-down	or	bottom-up.	For	example,	bottom-
up	 approaches	 generally	 use	 properties	 of	 the	 “top”	 as	 constraints,	 although	 this	 is	 rarely	
acknowledged	 (as	 we	 will	 see	 in	 chapter	 3).	 Conversely,	 connectionist	 approaches	 often	 take	
inspiration	from	structural	peculiarities,	such	as	the	modular	organization	of	the	brain	or	the	presence	
of	dendrites.	Some	parts	of	brain	and	mind	studies	are	dominated	by	connectionism,	such	as	systems	
neuroscience,	while	others	are	dominated	by	classical	computationalism,	such	as	cognitive	science.	
The	most	empirically	driven	models	of	neuroscience	are	 in	 fact	dynamical	systems	that	are	neither	
symbolic	nor	connectionist	(such	as	the	Hodgkin-Huxley	model).	
Thus,	brain	 theory	consists	of	a	heterogeneous	patchwork	of	approaches	and	models.	Nonetheless,	
they	share	a	common	terminology	borrowed	from	engineering,	in	particular	computer	science:	brains	
and	neurons	compute,	implement	algorithms,	encode	objects	and	properties,	represent	and	process	
information,	 and	 so	 on.	 For	 example,	 Sydney	Brenner,	who	pioneered	 the	neurogenetic	 study	 of	C.	
elegans,	a	microscopic	worm	with	302	neurons,	describes	his	approach	as	follows:	

“Behaviour	is	the	result	of	a	complex	set	of	computations	performed	by	nervous	systems	and	it	
seems	necessary	to	decompose	the	problem	into	two:	one	is	concerned	with	how	the	genes	specify	
the	structure	of	 the	nervous	system,	the	other	with	questions	of	how	nervous	systems	work	to	
produce	their	outputs.”	(BRENNER,	1973)	

Unlike	bees,	C.	elegans	cannot	count,	and	so	far,	no	one	has	found	hints	of	symbolic	representations	in	
its	 neurons.	 Thus,	 Brenner	 meant	 “computation”	 in	 a	 much	 broader	 sense	 than	 classical	
computationalists	do.	Apparently,	it	is	not	just	that	the	animal	can	compute,	but	all	behavior	results	
from	 a	 kind	 of	 computation	 implemented	 by	 the	 nervous	 system.	 This	 is	 typical	 of	 modern	
neuroscience	literature,	a	view	that	I	shall	call	neurocomputationalism:	neurons	are	conceived	as	input-
output	devices	that	compute	and	implement	the	algorithms	of	cognition.	But	what	is	meant	exactly	by	
“compute”,	“implement”	and	“algorithms”	 is	often	rather	vague,	and	indeed	may	differ	substantially	
between	approaches.	
This	terminology	is	not	decorative:	it	is	a	theoretical	commitment	that	forms	the	scaffold	of	reasoning	
about	brains	as	well	as	of	model	building.	Because	the	precise	meaning	of	those	words	is	often	left	
unspeci6ied,	 this	 scaffold	 is	 fragile	 and	 often	 incoherent	 (do	 neurons	 compute	 in	 the	 sense	 of	
connectionism,	in	the	sense	of	computationalism,	or	do	they	just	do	something	useful?).	And	because	
brains	are	not	actually	engineered,	this	scaffold	is	often	poorly	6itted	to	the	subject,	as	we	will	see.	In	
this	book,	we	will	explore	the	meaning	of	those	words,	and	the	extent	to	which	they	make	sense	when	
talking	 about	 brains,	 including	 computation	 (chapter	 4),	 representations	 and	 codes	 (chapter	 5),	
information	(chapter	6),	prediction	(chapter	7),	and	implementation	(chapters	8).	
First,	I	want	to	make	it	clear	why	this	choice	of	words	is	indeed	a	theoretical	commitment	about	how	
brains	work.	
	
Of	words	and	theories	
Many	words	we	use	to	talk	about	brains	come	from	our	ordinary	human	experience.	For	example,	we	
say	that	neurons	communicate,	or	send	messages.	These	words	originate	from	our	social	experience	
as	a	speaking	species.	We	use	them	for	neurons	because	we	recognize	some	features	of	communication	
in	the	biological	phenomenon:	neurons	of	the	retina	produce	electrical	spikes	(action	potentials)	that	
are	 speci6ic	of	 the	 image	being	presented,	 and	 this	 sequence	of	 spikes	 then	 travels	along	 the	axon,	
unchanged,	up	to	the	axonal	terminals,	as	if	they	were	Morse	messages	being	delivered	through	the	
nerves,	from	one	neuron	to	the	next.	On	the	other	hand,	we	know	very	well	that	the	receiving	neuron	
does	not	literally	“read	the	message”,	neither	does	it	imagine	the	image	that	the	message	is	supposed	
to	stand	for.	There	are	features	of	messages	that	seem	relevant	to	describe	the	electrical	activity	of	
neurons,	and	others	that	are	not.	When	we	say	that	spikes	are	messages,	we	focus	on	those	features	
that	we	6ind	relevant.	This	point	about	language	was	made	eloquently	by	Lakoff	and	Johnson	in	their	
classic	book	“Metaphors	we	live	by”	(Lakoff	and	Johnson,	1980):	“What	metaphor	does	is	limit	what	we	
notice,	highlight	what	we	do	see,	and	provide	part	of	the	inferential	structure	that	we	reason	with”.	For	
this	reason,	choosing	a	particular	word	 from	another	domain	 is	a	 theoretical	commitment.	We	will	
discuss	communication	metaphors	in	more	detail	in	chapter	5,	in	the	context	of	“neural	codes”.	
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The	most	important	engineering	metaphor	in	biology	is	the	machine	metaphor.	In	the	modern	view,	
living	beings	are	machines,	and	brains	are	computers,	which	are	kinds	of	machines.	We	know	this	is	a	
theoretical	commitment	because	the	idea	that	living	beings	are	machines	is	supposed	to	be	an	insight.	
We	know	quite	well	what	machines	are	in	real	life.	If	we	were	to	point	a	rabbit	to	a	ten-year-old	and	
say:	“look	at	this	machine”,	she	would	certainly	object	that	it	is	not	a	machine	but	an	animal.	A	machine	
is	something	made	by	humans	to	do	something	useful	for	them,	it	is	not	autonomous,	it	does	not	grow,	
it	does	not	feed	and	it	does	not	feel.	A	ten-year-old,	as	well	as	most	adults,	would	certainly	put	machines	
and	 animals	 in	different	 categories.	 Thus,	when	 the	biologist	 Jacques	Monod	 insists	 in	Chance	and	
necessity	(Monod,	1970)	that	actually,	a	living	organism	is	a	molecular	machine,	he	wants	to	convey	
something	important	and	not	obvious	about	life.	It	is	not	just	a	decorative	term	but	a	theoretical	claim.	
What	was	so	important	to	Monod?	Mainly,	he	wanted	to	oppose	vitalism,	according	to	which	organisms	
live	thanks	to	a	non-physical	vital	6luid.	By	claiming	that	living	organisms	are	machines,	he	meant	that	
biological	matter	follows	the	same	ordinary	laws	of	physics	and	chemistry	as	inert	matter,	and,	like	
machines,	it	is	by	virtue	of	its	organization	that	the	organism	does	what	it	is	supposed	to	do	(living	and	
reproducing),	not	thanks	to	a	special	substance.	A	machine	is	made	of	components	interacting	together	
in	certain	ways	so	as	to	support	the	function	of	the	machine.	In	the	same	way,	a	biological	organism	
consists	of	a	functional	arrangement	of	organs	–	the	digestive	system,	the	circulatory	system,	etc.	–	in	
the	service	of	the	maintenance	and	reproduction	of	the	organism.	Thus,	Monod’s	theoretical	claim	is	
that	living	organisms	are	goal-directed	functional	organizations	of	ordinary	matter.	
This	is	not	a	trivial	claim	at	all.	Surely,	we	can	recognize	parts	such	as	organs	in	animals,	but	those	are	
very	unlike	the	parts	of	machines.	Organs	grow,	for	example.	At	the	microscopic	level,	the	molecular	
content	of	 a	 cell	 changes	 in	 composition,	number	and	 localization,	 at	 timescales	of	milliseconds	 to	
years.	 It	 is	not	 so	obvious	how	 this	molecular	maelstrom	can	be	 conceptualized	as	 components	 to	
which	we	can	assign	functions,	like	the	functional	diagram	of	a	machine.	
In	 fact,	Monod	also	meant	 that	 living	organisms	are	machines	 in	 the	sense	that	 their	processes	are	
essentially	mechanical,	that	is,	that	their	parts	follow	deterministic	local	interactions	between	discrete	
elements,	mostly	 based	 on	 shape,	 like	 the	 solid	macroscopic	 objects	 of	 our	 ordinary	 experience	 –	
Monod	used	the	word	“clockwork”.	This	is	the	idea	of	the	standard	“key-and-lock”	concept	of	molecular	
biology,	according	 to	which	 the	shape	of	a	protein	determines	 its	 function.	However,	 the	claim	that	
living	 processes	 are	 essentially	 mechanical	 in	 this	 narrow	 sense	 is	 demonstrably	 false,	 as	 Daniel	
Nicholson	has	clearly	argued	(Nicholson,	2019),	and	as	we	will	 see	 in	 the	next	 chapter.	A	common	
example	in	the	brain	is	the	action	potential,	which	is	produced	by	spatially	separated	ionic	channels	
that	interact	non-speci6ically	at	a	distance.	
Thus,	by	claiming	that	living	organisms	are	machines,	Monod	makes	three	assertions,	corresponding	
to	three	features	of	machines.	The	6irst	one	is	that,	like	machines,	living	organisms	are	made	of	ordinary	
matter,	following	the	same	laws	of	physics	and	chemistry	as	inert	matter.	This	is	fairly	consensual.	The	
second	one	is	that	living	organisms	are	organized	like	machines,	with	parts	arranged	so	as	to	ensure	
the	function	of	the	whole	system.	This	is	questionable	or	at	least	ambiguous	(what	are	“parts”?	what	is	
“function”?).	The	 third	one	 is	 that	 living	processes	are	mostly	mechanical,	 essentially	deterministic	
local	 interactions	between	discrete	objects	(he	had	proteins	and	nucleic	acids	 in	mind).	This	one	 is	
demonstrably	false.	
This	 illustrates	several	 important	points	about	words	and	 theories.	First,	 the	choice	of	engineering	
words	is	a	theoretical	commitment.	When	we	use	the	word	“machine”	to	designate	living	beings,	we	
refer	to	some	features	of	machines	that	we	think	are	shared	by	living	beings.	This	is	a	convenient	way	
to	make	theoretical	claims	about	how	living	beings	work.	These	claims	may	or	may	not	be	correct,	or	
may	need	to	be	substantiated.	Second,	strict	identi6ication	as	in	“organisms	are	machines”	or	“neurons	
compute”	is	a	great	source	of	confusion.	In	what	sense	are	living	organisms	machines?	Are	they	made	
of	 parts?	 Assembled?	Are	 they	mechanical?	 Are	 they	 lawful?	 Are	 they	 engineered?	 These	 are	 very	
different	claims.	If	one	needs	to	carefully	explain	in	what	exact	sense	organisms	are	machines,	and	if	
different	people	pick	different	features,	then	organisms	are	not	actually	machines.	They	are	somewhat	
similar,	and	somewhat	different.	This	acknowledgment	is	crucial	for	conceptual	clari6ication.	
	
Biological	cognition	
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Cognition	 is	a	property	of	 (at	 least	 some)	 living	organisms.	Perception,	 cognition,	agency,	 free	will,	
consciousness	are	all	biological	phenomena.	Even	though	we	might	try	to	replicate	those	phenomena	
in	artifacts,	the	primary	empirical	source	remains	biology.	Yet,	strikingly,	the	study	of	cognition	appears	
to	be	a	branch	of	computer	science	rather	than	of	biology.	This	dismissal	of	biology	is	even	explicitly	
embraced	 by	 classical	 cognitive	 scientists,	 a	 view	 known	 as	 “functionalism”	 –	 biology	 is	 just	
“implementation”.	In	neuroscience,	the	standard	terminology	of	brain	theory	largely	refers	to	a	non-
biological	world,	the	world	of	machines	made	by	humans	–	computation,	implementation,	algorithms,	
codes,	optimization...	 Ironically,	scientists	have	abandoned	the	idea	that	 living	organisms	have	been	
designed	by	God,	only	to	adopt	a	model	of	 the	 living	based	on	artifacts	made	by	an	engineer.	Thus,	
Monod	 ridicules	 vitalism	 as	 some	 sort	 of	magical	 belief,	 but	 then	 identi6ies	 living	 organisms	with	
machines,	 those	 artifacts	made	 by	 humans	 for	 a	 purpose	 using	 knowledge	 and	 planning.	 Is	 this	 a	
scienti6ic	view	on	life,	or	monotheism	rejecting	paganism?	
The	idea	that	animals	result	from	intelligent	design	is	scandalous	to	a	scientist.	Yet,	it	appears	to	make	
very	little	difference	to	the	way	we	think	about	brain	and	mind.	On	the	contrary,	I	assert	that	a	proper	
understanding	 of	 life,	 beyond	 engineering	 preconceptions,	 is	 crucial	 to	 an	 understanding	 of	 its	
cognitive	properties.	
Why	are	living	organisms	compared	to	machines	in	the	6irst	place,	rather	than	to	any	complex	physical	
system	like	the	climate?	The	reason	is	that	machines	are	goal-directed,	like	living	organisms.	But	the	
goals	 of	machines	 are	 just	 the	 goals	 of	 their	 engineers,	 and	 therefore	 the	machine	 view	 does	 not	
actually	 address	 the	 issue	 of	 goals,	which	means	 that	 the	 choice	 of	 the	machine	metaphor	 has	 no	
ground.	 As	 we	 will	 see	 in	 the	 next	 chapter,	 living	 organisms	 do	 not	 have	 goals	 because	 they	 are	
machines,	but	because	they	are	precarious	entities	that	must	exchange	matter	and	energy	with	their	
environment	in	order	to	maintain	themselves.	Cognitive	properties	are	rooted	in	these	facts	of	life,	not	
in	their	presumed	mechanistic	nature.	
Living	organisms	must	feed.	They	have	no	material	persistence.	They	develop	by	division.	They	evolve	
with	no	plan	or	direction.	They	are	autonomous.	This	book	explores	the	consequences	of	these	facts	of	
life	for	the	understanding	of	brains,	cognition	and	behavior.	I	will	start	by	presenting	a	modern	view	of	
life	in	the	next	chapter.	In	the	rest	of	the	book,	we	will	use	these	lessons	of	life	to	revisit	the	standard	
concepts	of	brain	theory.	In	chapter	3,	I	will	question	the	reductionist	preconceptions	of	“bottom-up”	
(“reverse-engineering”)	 approaches.	 In	 chapter	 4,	 I	 will	 argue	 that	 brains	 are	 not	 “biological	
computers”	 in	 any	 useful	 sense.	 In	 chapter	 5,	 I	 will	 explain	 that	 “neural	 codes”	 (or	 “neural	
representations”)	are	a	misleading	engineering	concept,	which	does	not	stand	empirical	scrutiny,	and	
which	 is	 theoretically	 incoherent	 when	 applied	 to	 brains.	 In	 chapter	 6,	 I	 will	 show	 that	 the	
neuroscienti6ic	concept	of	“information”	is	problematic	in	a	biological	setting,	because	it	is	framed	as	
what	the	engineer	can	recover	from	a	signal,	and	the	engineer	always	uses	preexisting	knowledge	in	
addition	to	the	signal.	In	chapter	7,	I	will	argue	that	anticipation	is	the	core	property	that	theories	of	
cognition	try	to	explain,	but	that	its	common	identi6ication	with	prediction	is	mistaken.	Instead,	I	will	
develop	an	account	of	anticipation	as	the	exploitation	of	regularities,	rooted	in	the	precarious	nature	
of	life.	In	chapter	8,	I	will	show	that	the	concept	of	“implementation”	introduces	a	biased	view	of	the	
organization	of	brain	processes,	mirroring	the	way	we	make	devices	rather	than	accounting	for	the	
autonomy	of	life.	I	will	end	the	book	on	an	alternative	view	of	organisms	and	brains	as	colonies	of	living	
entities,	and	outline	what	it	implies	for	the	development	of	brain	theory.	
	 	


