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Responses of auditory neurons vary with many dimensions of acoustical stimuli. As a consequence,
there is a difference between sensitivity to a particular dimension (e.g., ITD or level), which is
assessed when only that dimension is varied while other dimensions are fixed (yielding tuning
curves), and information about that dimension, which requires that all natural variability be
considered. In particular, the rate of a neuron can be very sensitive to a dimension while poorly
informative about it, if it is also sensitive to other dimensions. One implication is that in a
multi-dimensional world, stimulus properties such as ITD are optimally coded with heterogeneous

neural populations. © 2010 Acoustical Society of America. [DOI: 10.1121/1.3488311]

PACS number(s): 43.66.Ba, 43.64.Bt, 43.66.Qp [JCM]

I. INTRODUCTION

Neural responses in the auditory pathway vary with eco-
logically relevant characteristics of auditory stimuli, such as
interaural time difference (ITD) or frequency. To understand
how neurons might extract this relevant information, many
studies have looked at how neuronal responses change when
one controlled parameter (ITD, frequency, level) is varied,
which defines “tuning curves” with respect to that parameter.
If the neuron’s response is sensitive to the parameter, i.e., the
tuning curve has a steep slope, then it is easy to infer the
parameter value from the observation of the neural response.
Therefore in one-dimensional worlds (e.g. binaural tones
with fixed frequency and varying ITD), sensitivity and infor-
mation are naturally related. In the following, sensitivity re-
fers to how much the neural response changes with the pa-
rameter (which is related to the slope of the tuning curve),
while information refers to how accurately one can estimate
the parameter from the observed response—or, in the stan-
dard information-theoretic sense: how much the uncertainty
about the unknown parameter is reduced when the neural
response is observed.

With this approach, it was found that the ITD tuning
curve of single neurons in the inferior colliculus of guinea
pigs is sensitive enough so that the just noticeable difference
(JND) in spike count is comparable to psychophysical mea-
surements of ITD discrimination (Skottun et al., 2001). It
was also suggested that neurons should be more efficient in
encoding ITDs when the slope of their tuning curve is maxi-
mized in the relevant ITD range (Harper and McAlpine,
2004). Similar methods led to the conclusion that auditory
nerve responses contain significant temporal information
about frequency and level up to 10 kHz (Heinz er al., 2001a).

However, in ecologically relevant situations, stimuli are
not constrained to predefined one-dimensional sets. In this
case, tuning curves represent just one slice of neural re-
sponses because neural firing rates depend on many other
stimulus characteristics. It follows that sensitivity to a pa-
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rameter is in general very different from information about
that parameter, unless neural responses are invariant to all
other unknown stimulus dimensions.

I will first show that information about a parameter is
overestimated when only that parameter is allowed to vary
(Sec. II). In Sec. III, T will emphasize that the sensitivity of
neural responses to a parameter, which is quantified by tun-
ing curves, is equivalent to information in the special case
when the parameter is the only source of stimulus variability.
Tuning curves do not quantify information in more realistic
settings where other stimulus dimensions can vary. Finally, I
will show that when neural populations are considered, the
optimal code for a sound property such as ITD is a popula-
tion of neurons with heterogeneous tunings, unless stimuli
are constrained to a low-dimensional world (Sec. IV).

Il. INFORMATION IN SINGLE-PARAMETER
EXPERIMENTS AND IN THE REAL WORLD

To see why information about a parameter is overesti-
mated when only that parameter is allowed to vary, let us
consider the fictional example of a bird which eats sliced
cakes (Fig. 1). The bird must determine whether the cake is
toxic, which occurs if it has more bad slices than good slices.
It has a neuron which fires in proportion to the number of
bad slices. To understand how this neuron encodes informa-
tion about cake toxicity, the experimenter presents cakes
with three slices, and the number of bad slices is varied
between 0 and 3 (first row in Fig. 1). By observing the firing
rate of the neuron, the experimenter can infer the number of
bad slices and therefore the toxicity of the cake. In terms of
information theory, the observation reduces the uncertainty
(or entropy) about cake toxicity from 1 bit (good or toxic) to
0 bit (certainty). The mutual information between cake tox-
icity and neural response is this reduction of uncertainty,
which is the maximum of 1 bit in this case.

One may ask how this information depends on the num-
ber of slices of the cake. If the same experiment is done with
cakes made of just one slice, which is either good or bad
(second row in Fig. 1), then the experimenter can also infer
cake toxicity from the response of the neuron. Clearly, for
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FIG. 1. Overestimation of information in single-parameter experiments. A
bird must decide is a cake is toxic, which occurs when the cake has more
bad slices (black) than good ones (white). In the first two rows, cakes have
a fixed total number of slices and a variable number of bad slices. Observing
1 bad slice reduces uncertainty about toxicity by 1 bit (from 2 alternatives to
only 1). In the third row, the total number of bad slices is not fixed. In this
case, observing 1 bad slice does not reduce uncertainty at all.

any number of slices in the cake, the information between
neural response and cake toxicity is 1 bit, which is optimal. It
would seem natural to conclude that this mutual information
is 1 bit in general, but this is not true. In the real world, the
number of slices in a cake is not fixed and the bird can meet
cakes with either 1 or 3 slices (third row in Fig. 1). Suppose
the neuron signals the presence of 1 bad slice. Then the cake
is toxic if the cake has just one slice, but good if it has 3.
Therefore the observation of the neural response does not
reduce the uncertainty at all (i.e., O bit). Thus in this more
realistic setting, the mutual information between neural re-
sponse and cake toxicity is less than 1 bit. More precisely, if
all cakes shown in Fig. 1 are equally likely, then the neural
response is unambiguous in 4 out of 6 cases (0 or 2 bad
slices), so that the mutual information is 2/3 bits.

This apparent paradox is resolved by observing that the
decoding mechanism (or the optimal estimator) is different
for 1-slice cakes and for 3-slice cakes, and there is no decod-
ing mechanism that works for both cases: 1 bad slice means
toxic cake in the former case, but good cake in the latter
case. In other words, the information measured in con-
strained single-parameter experiments iS an overestimation
because it implicitly contains information in the decoding
mechanism that is available only to the experimenter (the
total number of slices).

This remark can be mathematically proved in a general
setting as follows. Consider that the stimulus can be written
as a basis stimulus S with characteristic X, e.g. (S(¢),S(z
—X)) for a binaural stimulus or XS(z) for a sound with vary-
ing intensity. The mutual information between the neural re-
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sponse Y (e.g. spike count) and the parameter X is I(X,Y|S)
when § is fixed (conditional mutual information) while it is
I(X,Y) when S is not fixed (Cover and Thomas, 2006). In
Fig. 1, § is the total number of slices, X is the cake toxicity
(good or toxic) and Y is the number of bad slices. Then the
following inequality holds: I(X,Y|S)=1(X,Y). The proof is
simple:

I(X,Y|S) = H(X|S) - H(X|Y,S) = H(X) — H(X|Y,S)
= H(X) - HX|Y) =I(X,Y),

where the first line is the definition of mutual information
(reduction of uncertainty about parameter X when the obser-
vation Y is known), the second line expresses the fact that X
and § are independent and the third line comes from the fact
that uncertainty decreases when S is known (in general, the
inequality is strict). Thus information about parameter X is
overestimated when stimuli are confined to a one-
dimensional set.

lll. TUNING CURVES, SENSITIVITY AND
INFORMATION

A. A toy example

To understand how neurons might extract information
about a continuous parameter (ITD, frequency, level), a typi-
cal approach is to measure how neuronal responses change
when that parameter is varied, which defines funing curves
with respect to that parameter. In such a controlled situation,
there is a direct link between sensitivity, as assessed for ex-
ample by the slope of the tuning curve, and information. To
see this, suppose that we recorded the firing rate of a neuron
in response to a controlled stimulus, for different values of
some parameter x (e.g. ITD). This defines a tuning curve for
x, as shown in Fig. 2(a). The value of x can be inferred from
the observation of the firing rate simply by inverting the
tuning curve: in this case, x=F/k, where k is the slope. Un-
certainty about x may arise from the fact that the number of
spikes may vary for different observations with the same
stimulus, i.e., the firing rate F is only the average observed
number of spikes over repeated trials with the same stimulus,
divided by duration. The uncertainty o about the firing rate
F [vertical arrows in Fig. 2(a)] translates to uncertainty o,
about x [horizontal arrows in Fig. 2(a)]. If the slope of the
tuning curve is smaller [Fig. 2(b)], then the uncertainty about
x is larger; quantitatively, o,=op/k. Thus, the information
provided by the rate F about the parameter x is directly re-
lated to the sensitivity of the rate to x, i.e., to the slope of the
tuning curve.

In fact, there is a precise mathematical relationship be-
tween information and sensitivity in this one-dimensional
case (only x is varied). The following formula relates the
mutual information between the neural response Y (spike
count) and a parameter X with a measure of sensitivity called
Fisher information (Brunel and Nadal, 1998):
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FIG. 2. Tuning curves and information. (a) The tuning curve describes the
firing rate F as a function of a parameter x. If this relationship is known, the
parameter value can be inferred from the observation of F. (b) The estima-
tion error is inversely proportional to the slope of the tuning curve. (c) For
a different stimulus, a different tuning curve may be measured with respect
to the same parameter x, possibly with the same slope. (d) Suppose the firing
rate is in fact F=x+y, where y is a hidden variable corresponding to same
other property of the stimulus (e.g., level; the lines are tuning curves for
different values of y). Then even though x can be inferred from F for any
fixed value of y using the tuning curves, it cannot be accurately estimated if
y is not fixed. (¢) If F=x+y and x and y can both vary between 0 and 1, then
the observation of F constrains x and y to a level line (solid diagonal), and
uncertainty on F corresponds to uncertainty on the level line (dashed lines).
The estimation of x is obtained by projecting the level line on the x axis,
which gives a very inaccurate estimation in this case. (f) To obtain an accu-
rate estimation of x, the firing rate must be insensitive to y.

1X.Y) = HX) - - f p(x)log<i>dx,

2 IFischer(x)
where Ipisher(x) is the Fisher information, defined from the
tuning curve (not exactly the derivative of the tuning curve
because the variance of spike count depends on the rate F).

Thus, the tuning curve indeed tells us how much infor-
mation is contained in the neural response about the param-
eter, in the situation when that parameter is the only source
of stimulus variability. However, as we stressed in Sec. II,
this is not the same as the information about the parameter
when stimuli are not artificially constrained to a restricted
set.

In a more realistic situation, information corresponds to
sensitivity to the parameter only if neural responses are also
insensitive to other dimensions of stimuli. To see this, sup-
pose now that in Fig. 2(a) the neuron is also sensitive to
another stimulus characteristic y, and that the tuning curve
was measured with y=0. Let us assume that the firing rate of
that neuron is in fact F(x,y)=x+y. If we measure the tuning
curve with any another value for y, then we will observe that
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the neural response is also sensitive to x [Fig. 2(c)], and
therefore the neural response is very informative about x.
But, as for the example of the cake-eating bird (Fig. 1), this
does not imply that the neural response is very informative
about x when y is not constrained: in that case, the uncer-
tainty about y translates to an uncertainty about x [Fig. 2(d)].
It appears that the uncertainty about x is made of two com-
ponents: the uncertainty about the underlying firing rate F
(given the observed spike count) and the uncertainty about
the hidden variable y. The tuning curve only assesses the
former source of uncertainty, but in Fig. 2(d) the latter is
dominant.

Quantitatively, the contribution of the uncertainty about
y depends on the sensitivity of the neural response to y.
Figure 2(e) shows the set of parameter values (x,y) consis-
tent with the observed firing rate F=1 (solid line), where x
and y are allowed to vary between O and 1. The uncertainty
about the rate F is shown by the dashed lines. It appears in
this case that any value of x between 0 and 1 is consistent
with the observation, and in fact the uncertainty about F does
not contribute any additional uncertainty about x. On the
other hand, if the neural response was not so sensitive to y,
as shown in Fig. 2(f) (here F(x,y)=x), then the uncertainty
about x would be mainly determined by the uncertainty about
F.

In the case of Fig. 2(e), it is possible to estimate the
standard deviation of the optimal estimator of x, if we as-
sume that x and y are uniformly distributed between O and 1.
It is larger than 1/\1’5 times that of random guessing. To see
this, observe that if F<1 (which occurs with probability
1/2), then x can be any value between 0 and F, with equal
probability. Therefore the estimation cannot be better than
random guessing between 0 and F, which has a variance
aéuesst (O guess 18 the standard deviation of random guessing
between 0 and 1). The expectation of F? in the lower triangle
F<1 in Fig. 2(e) can be calculated: E[(X+Y)?|X+Y<1]
=1/2. Since the case F> 1 is symmetrical and equally likely,
the variance of any estimator is at least (1/ 2)a'§uess, ie., the
standard deviation is at least 1/\2 times that of random
guessing.

B. ITD tuning curves

To be more specific, let us look at the encoding of ITDs
in a single frequency channel, similarly to Harper and
McAlpine (2004). The response of binaural neurons is usu-
ally described as the cross-correlation of the inputs with a
preferred interaural delay d,

Fy = (S (t)Sk(t - d))

(or a variation of this formula) so that, as a function of ITD,
the rate of the neuron is:

F,ITD)=(S(t-ITD)S(t - d)).

When the sound S is a pure tone with fixed frequency and
level, the tuning curve is a sinusoidal function. If the wave-
length of the tone is large enough compared to the range of
natural ITDs, then the firing rate is most sensitive to ITD
over that range when the inflexion point of the tuning curve
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FIG. 3. ITD curve of a cross-correlator neuron with best delay at 1/(2f).
The stimuli are 500 ms noise bursts filtered by a 4th order gammatone filter
with characteristic frequency 200 Hz, half-wave rectified and power normal-
ized (so that the cross-correlation function peaks at 125 Hz). Solid lines
represent the average firing rate * the standard deviation contributed by
sound variability. Dashed lines represent the additional error contributed by
spiking variability (assuming Poisson statistics) for a single neuron. When
the responses of 100 neurons are pooled, the contribution of spiking vari-
ability vanishes, leaving only the error due to sound variability. The result-
ing ITD estimation error is 100 us on average (about 15° azimuth for
humans).

is at 0 ITD (i.e. when d=/(2f), where f is the frequency).
In the case when the only source of variability is ITD this
choice indeed maximizes the information about ITD (where
uncertainty comes from spiking variability—in fact the opti-
mally informative point is not exactly the inflexion point
because information increases with rate but this is irrelevant
to the present discussion). The symmetrical choice (d=
—1/(2f)) is also optimal. When many neurons are consid-
ered and their firing is independent, then the distribution that
maximizes information about ITD is two populations of neu-
rons with best delays near *+7/(2f) (Harper and McAlpine,
2004). ITD estimation can be made arbitrarily precise by
increasing the number of neurons—in fact the precision
reached with just a few neurons is far better than that found
in psychophysical measurements. More generally, when the
parameter distribution (i.e., distribution of natural ITDs) is
restricted to a limited range, it has been shown in other con-
texts (evolution theory) that the optimal distribution of tun-
ings is discrete (Sasaki and Ellner, 1995), even though small
perturbations can make it continuous (Haccou and Iwasa,
1998) [see also Brunel and Nadal (1998), Sec. 5.2].
However, as we previously stressed, the equivalence be-
tween sensitivity and information holds only because all
other sources of variability have been neglected. Consider
now that stimuli are 500 ms filtered noise bursts (through a
gammatone filter). Then the firing rate of the binaural neuron
depends not only on the ITD but also on the particular noise
token S. This contributes an additional variability in the tun-
ing curve, which is represented by the solid lines in Fig. 3 (to
make the estimation easier, the noise bursts were normalized
in power). In this case, the standard deviation of the optimal
ITD estimator is about 100 wus, even if spiking variability is
neglected. The key point is that the source of variability is no
longer independent between neurons because it is in the sig-
nal, so that pooling neurons with the same tuning will not
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reduce the estimation error, which will remain about 100 us.
The contribution of stimulus variability was recently mea-
sured in neurons in the inferior colliculus of guinea pigs
(Shackleton and Palmer, 2006), with noise bursts of identical
power, and was found to be about 20%. This may seem small
(although a large part of it was reduced by normalizing the
power), and thus neglecting stimulus variability might seem
reasonable. The problem is that it does not generalize to
populations of neurons, because this part of variability does
not decrease when pooling neurons with the same properties.
Thus, for a pool of five neurons, stimulus variability is al-
ready similar to spiking variability. For 25 neurons, the pro-
portion is reversed. Thus, even though all neurons in the
two-channel population model are optimally sensitive to
ITDs, they no longer form an optimal code for ITD because
the estimation error is lower bounded by the error due to
stimulus variability. More generally, optimal codes for the
same property (e.g. ITD) are completely different when
stimuli are constrained to a one-dimensional set and in more
realistic situations.

IV. OPTIMAL POPULATION CODES

A. Optimal population code for ITD: Two-channel
model vs. maximal activation model

As explained in Sec. III B, when only the ITD of the
sound is allowed to vary, a binaural neuron is optimally in-
formative about ITD if its response is maximally sensitive to
it, in the range of natural ITDs. When the sound frequency is
small enough, two symmetrical best delays satisfy this con-
dition, such that the tuning curve has maximal slope around
0 ITD, and the optimal code consists of two homogeneous
populations of neurons with opposite best delays. I will now
show that when sound variability is not neglected, a maximal
activation model (e.g. Jeffress model) performs better than
the two-channel model, which is therefore not optimal.

Let us consider two infinitely large populations of bin-
aural neurons tuned at opposite best delays (e.g. =/ (2f),
but the precise value is irrelevant). We wish to estimate the
ITD of the sound source from the activation of these neu-
rons. Since we consider infinitely many neurons, variability
in spike count vanishes and we may consider only the two
firing rates x; and x. Estimation in the two-channel model is
generally described as a weighted average of the two sym-
metrical delays *A:

XLA —_XRA

ITD ogiimated =
X1, +Xx R

This is not the most accurate estimator of ITD given the
rates x; and xg (it is biased unless the tuning curve is linear).
But I will show that no single estimator can provide a perfect
estimation of ITD from these two values. Suppose such an
estimator exists, which maps (x;,xz) to ITD. Changing
sound level with a constant ITD leaves the ratio xz/x; un-
changed, which implies that the estimator is in fact a func-
tion of that ratio (it is indeed the case of the estimator
above). The ITD can then be estimated from that interaural
ratio only if there is a univocal mapping from ITD to the
interaural ratio, i.e., if that ratio does not depend on the
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FIG. 4. ITD estimation [(a)—(c)] in the two-channel
model and (d) in the maximal activation model. The
sounds are gammatone filtered noise bursts, as in Fig. 3.
(a) In the two-channel model, the rate of two popula-
tions of neurons with symmetrical best delays are com-
pared. Their ratio is level-independent, but the indi-
vidual tuning curves depend on the noise token (solid
and dashed lines correspond to two different tokens).
(b) As a result, the ratio between the two population
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sound but only on the ITD. While this is true if the sound is
fixed (i.e., pure tone with fixed frequency), it is not if any
dimension is allowed to vary. For example, consider two
tones with different frequencies f; and f, within the channel
bandwidth: the mapping ITD+—>xp/x; is periodic with re-
spect to the input (not preferred) frequency, and therefore a
given ITD is mapped to different interaural ratios depending
on input frequency (except for a finite number of intersection
points). For noise bursts, the ratio xz/x; depends on the spe-
cific noise token except for O ITD where the ratio is always
1. This is shown in Figs. 4(a) and 4(b), with the same model
as in Fig. 3. For two different tokens of noise (solid and
dashed lines), the tuning curves for the two populations are
similar but quantitatively different, even if they are normal-
ized in level [Fig. 4(a)]. As a result, the tuning curve for the
ratio of activities in the two channels also depends on the
noise token [Fig. 4(b)], except for 0 ITD where it is always
1. This contributes an uncertainty about the ITD that is due
to the uncertainty about the stimulus [Fig. 4(b), dotted lines],
even though spiking variability is negligible, in the same
way as in our example in Fig. 3. This implies that estimating
the ITD from the ratio without previous knowledge of the
sound will necessarily yield errors except near 0 ITD, as is
shown in Fig. 4(c).

On the other hand, consider a heterogeneous population
of neurons with different best delays, sampling the whole
range of possible ITDs. Then when a sound is presented at a
given ITD, neurons respond differently as a function of their
best delay d [Fig. 4(d), solid line]. If a different token of
noise is presented at the same ITD, the pattern of activation
is different (dashed line), but the same neuron is maximally
activated, which unambiguously indicates the ITD even
though the sound is unknown (dotted vertical line). Indeed,
for any sound S, the maximally activated crosscorrelator neu-
ron is the one with best delay d=ITD, as shown by the fol-
lowing calculations:

((S(t-ITD) - S(t—d))*>y = 0,
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2(8%) = 2(S(t - ITD)S(t - d)) = 0,

Fip(ITD) = F(ITD),

where the first line simply expresses the positivity of squares
(angle brackets mean temporal average), the second line
comes from the development of the squared expression, us-
ing the fact that (S(r)*)=(S(t—d)?) (time shift), and the third
line is just the definition of the cross-correlation function
(F,(ITD)=({S(t—ITD)S(t—d))). Thus the mapping from ITD
to the place of maximal activation is one-to-one and does not
depend on the sound S, which implies that the estimation
error of a maximal activation model converges to zero when
the number of neurons increases.

More precisely, consider N best delays regularly
sampled in the physiological range of ITDs and N popula-
tions of M neurons tuned at these best delays. The ITD esti-
mation is the best delay of the maximally activated popula-
tion. Spike count variability vanishes when M is large
enough and the pattern of population activation approximates
the function d— F,(ITD) (neural activity vs. best delay for a
given ITD) when N is large enough, so that the maximally
activated population indeed signals the correct ITD of the
sound with a large number of neurons.

Since we found an estimator (the maximal activation
model) which performs better than the two-channel model,
that model is not an optimal code for ITD when stimulus
variability is not neglected. Unfortunately, this does not tell
us what the optimal one is. It seems unlikely that this maxi-
mal activation model (or “peak coding”) is optimal, because
it discards the information in all channels but the ones
around the peak. But better estimators can be devised, using
for example the fact that the cross-correlation function is
symmetrical with respect to the ITD, independently of the
sound [e.g., with a weighted population average (Fitzpatrick
et al., 1997)]. In general, it is very difficult to answer the
question of optimality when there are many dimensions, but
we can prove that the optimal distribution of best delays
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must be heterogeneous, that is, it must include an infinite
number of different best delays (or, at least as many dimen-
sions as stimulus dimensions).

B. Optimal codes in multidimensional worlds

Consider a stimulus S=(X, 6), where 6 is the parameter
that we want to estimate and X is an n-dimensional random
variable. For example, 6 could be the ITD, and X could be
the frequency and level of a tone. For white noise, X would
be infinite-dimensional. Suppose a population of m neurons
encodes this stimulus in their firing rate through a set of
functions f;(X, 6). For a fixed X and variable 6, f;(X, 6) rep-
resents the tuning curve of neuron i. To simplify, we assume
that the responses have the same functional form but a dif-
ferent preferred parameter value 6;: f;(X, 0)=f(X, 6—6,). For
the example of ITD processing, 6; would be the best delay of
neuron i. How should we choose these preferred values 6; in
order to optimally encode € in the firing rate of the neurons?
The idea is simple: to raise any ambiguity, the mapping from
(X,0) to (f(X,6-6,),...,f(X,6-6,)) should be one-to-one,
which requires that at least n+1 of the m values 6,,...,6,,
are different.

This reasoning still holds when spiking variability is
considered. Suppose neurons fire randomly, so that the ob-
served number of spike counts is ¥;=G,(f(X, 6—6,)), where
G; are independent random Markov processes with the same
properties (e.g. Poisson processes). We want to estimate 6
from the m observed spike counts. From the data processing
inequality, it follows that the mutual information between 6
and the spike counts is smaller than the information between
0 and the firing rates: 1(6,{Y;}) =I1(6,{f(X, 6— 6,)}). This up-
per bound depends only on the set of distinct values 6, rather
than on the number of neurons m. If there are fewer than n
+1 distinct values, then the function which maps (X, 6) to the
rates {f(X,6-6)} is not invertible, and therefore the infor-
mation is strictly smaller than the maximum: /(6,{f(X,0
—6)}) <H(6). Therefore the information between € and the
spike counts cannot approach the maximum, even if there are
many neurons in the population.

On the other hand, one can easily construct an estimator
which can be as precise as desired from a population of m
=p(n+1) neurons, with n+1 different preferred parameter
values. The population is divided into n+1 subgroups of p
neurons, where all neurons in each subgroup have the same
preferred value 6;. The total spike count of each subgroup is
used to estimate the underlying firing rate {f(X, 6— 6,)}. This
estimation can be made as precise as desired by having more
neurons. Then from the n+1 firing rates, one can deduce the
value of X and 6.

We constructed this estimator for the sake of the proof,
but of course it does not mean that it is the optimal one.
However, it proves that an estimator with fewer than n+1
preferred values is not optimal, and therefore that the optimal
estimator must include at least n+1 preferred values. Thus,
an optimal population code in a multidimensional world is
necessarily heterogeneous, even though only one dimension
is to be estimated.
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V. DISCUSSION

Because neuron responses depend on many aspects of
auditory stimuli, sensitivity should not be equated with in-
formation about a particular property. The reasoning can be
summarized as follows:

(1) Tuning curves measure the sensitivity of neural re-
sponses to a given parameter, which is equivalent to in-
formation about that parameter when possible stimuli
only differ in that dimension.

(2) When stimuli are allowed to vary in other dimensions,
information can drop drastically, if neural responses are
also sensitive to them. Therefore sensitivity analyses
overestimate information in realistic settings.

(3) This drop in information is due to the signal (stimulus
variability) rather than the noise (spiking variability).
Therefore pooling many neurons with the same tuning
does not eliminate this source of uncertainty. Thus when
stimuli are variable, optimally encoding a property re-
quires a population of neurons with heterogeneous
tunings.

I will now review a few results based on sensitivity
analysis in the light of these remarks. It was found in com-
putational models that the auditory nerve responses contain
temporal information about tone frequency and level that is
several orders of magnitude better than that implied in psy-
chophysical measurements, when a single dimension is var-
ied (Heinz et al., 2001a). This conclusion is correct because
these psychophysical measurements correspond to the situa-
tion where a listener is previously trained to a set of tones
that only vary in frequency, and tested with the same set.
However it does not necessarily generalize to other tasks that
may be more ecologically relevant, for example determining
the pitch of a periodic sound [but see Heinz et al. (2001b) for
level variability].

It was found that just noticeable differences (JNDs) ob-
tained from tuning curves of ITD-sensitive neurons were
comparable with psychophysically measured JNDs even if
only a single neuron is considered (Skottun er al., 2001). The
tuning curves were obtained with pure tones with varying
ITD. As argued in Sec. III B, the information about ITD is
much lower if stimuli are not constrained as in the experi-
ment. Yet psychophysical measurements have shown that be-
havioral performance is also very good in more realistic set-
tings where sounds are fresh noise tokens (Mossop and
Culling, 1998), and the quantity derived from the tuning
curve is a poor indicator of information in this case. In con-
trast, a previous study estimated that the responses of 40
thalamic neurons need to be pooled to reach behavioral ac-
curacy (Fitzpatrick er al., 1997). To obtain this number, the
authors used a simple estimator of ITD: the center of gravity
of the response profile (firing rate vs. best delay). In contrast
with the two-channel model, the error of this estimator con-
verges to zero in the limit of an unbounded range of best
delays (because of the symmetry of the cross-correlation
function). However it might not be optimal (Snippe, 1996),
therefore the estimation is an upper bound on the optimal
estimation.
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For low frequency sounds in small animals, it was
claimed that a two-population model optimally encodes ITD
(Harper and McAlpine, 2004). Although this is correct for
the considered situation, i.e., tones of fixed frequency and
level and variable ITD, it does not generalize to the situation
where the sound is not previously known. In that setting, the
optimal distribution of best delays should in fact be hetero-
geneous rather than discrete (Sec. [V B)—but not necessarily
uniformly distributed in the natural range of ITDs. This is
not in contradiction with the observed distribution of best
delays in mammals [see e.g. Yin and Chan (1990) for cats
and Pecka er al. (2008), supplementary Fig. 2, for gerbils]:
even though best delays are not uniformly distributed, their
distribution is far from discrete (even within a given fre-
quency channel).

The idea that neurons should be maximally sensitive to
ITD (“slope coding”) relies on an implicit assumption: that
neurons provide independent information about the stimulus.
But this is not true with realistic stimuli. This has conse-
quences for coding (Sec. IV A), but perhaps more impor-
tantly for decoding. To see this, consider two neurons with
different preferred ITDs 6, and 6. Suppose they both fire at
100 Hz in response to an unknown low-frequency sound at
an unknown ITD. Each of these two responses provides a
poor estimation of ITD, and the pooled estimate is only
slightly better. But the joint observation of the two responses
provides a much better estimate: if the neurons fire at the
same rate while they have different tunings, then the ITD is
in fact (1/2)(6,+ 05). Thus, pooling is not an efficient way to
decode heterogeneous codes. Instead, it is precisely the ITD-
dependent correlations that provide information.

We have only considered two elementary aspects of re-
alistic auditory environments: ITD and signal variability. But
biological organisms must face much more complex situa-
tions, which could potentially have consequences on the neu-
ral codes they should use. For example, in low frequencies,
there is not a single ITD but rather a specific frequency-
dependent pattern of ITDs for any given location, because of
diffraction by the head (Kuhn, 1977). Perhaps more impor-
tantly, binaural signals are always corrupted by background
noise, and an “optimal code” should be robust to this noise.
Taking this noise into account has consequences in terms of
coding. For example, in the two-channel model, uncorrelated
binaural noise cannot be distinguished from a sound source
at 0 ITD (all neurons fire at the same rate), while these two
stimuli can clearly be distinguished if tunings are heteroge-
neous. In other words, two channels can convey information
about ITD and level, but at least one additional channel is
required to convey information about the reliability of the
estimations.

This discussion raises the question of the relevance of
theoretical approaches based on optimality principles. Low
frequency binaural neurons in birds have more heteroge-
neous tunings than those in small mammals, even when the
head size and preferred frequencies are similar (Carr and
Koppl, 2007, Wagner et al., 2007), which suggests that at
least one of these best delay distributions is not optimal. Yet,
it seems reasonable to expect that a neural structure that has
evolved over millions of years should be optimal for its func-
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tion. If we hypothesize that these distributions are optimal,
then there are two alternatives: (1) either the binaural cues
are different, or (2) the two distributions are not optimal for
the same task. One acoustical specificity of small mammals
such as guinea pigs is that, unlike birds, their ears are very
close to the ground. This implies that for most sound sources,
the direct sound is shortly followed by a reflected sound,
which is not very attenuated in low frequencies. If the delay
is short enough, it cannot be suppressed by the auditory sys-
tem [via the precedence effect (Litovsky et al., 1999)], and
therefore both ITDs and ILDs would be impacted. Another
difference might be that most relevant sound sources lie on
the horizontal plane for small mammals, but in a three-
dimensional space for birds. The other alternative is that the
distributions are optimal for different tasks. For example, to
steer towards a sound source in a two-dimensional world, it
is sufficient to know whether the source is on the left or on
the right. For this simple categorization task, the two-channel
model is sound-invariant, and it is in fact optimal [see
Bonnasse-Gahot and Nadal (2008)]. Thus, two symmetrical
broad channels might provide a motor code [as suggested by
Hancock (2007)].

Finally, should codes be optimal in biological systems?
First, from the perspective of a biological organism, what
should be optimal is not coding per se, but computation, that
is, coding together with decoding. If the optimal code has to
be decoded by a very complex system, then it is not very
useful. More generally, if no other constraint is considered
(e.g. decoding), then optimal coding is achieved when no
processing is done at all (i.e., keeping the two monaural sig-
nals unprocessed). Second, various quantities could be opti-
mized: estimation accuracy, but also number of neurons, wir-
ing length and more generally energy consumption. If two
neurons were sufficient to locate a sound source with reason-
able accuracy, then an extended optimality principle, includ-
ing energy consumption, would predict that binaural struc-
tures should have no more than two neurons (or perhaps a
few more, if cell death is taken into account). I would then
suggest that, while optimality is an interesting theoretical
principle, it is most useful when it is applied to the difficult
tasks that biological organisms must face, rather than to ar-
tificial situations which are not challenging for them.
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