What is computational neuroscience? (XIII) Making new theories

Almost all work in philosophy of science concerns the question of how a scientific theory is validated, by confronting it with empirical evidence. The converse, how a theory is formulated in the first place, is considered as a mysterious process that concerns the field of psychology. As a result of this focus, one might be led to think that the essence of scientific activity is the confrontation of theories with empirical facts. This point stands out in the structure of biology articles, which generally consist of a short introduction, where the hypothesis is formulated, the methods, where the experiments are described, the results, where the outcome of the experiments is described, and the discussion, where the hypothesis is evaluated in regard of the experimental results. The making of theory generally makes a negligible part of the articles.

Let us consider the problem from a logical point of view. At a given point of time, there is only a finite set of empirical elements that can be taken into account to formulate a theory. A theory, on the other hand, consists of universal statements that apply to an infinite number of predictions. Because the empirical basis to formulate a theory is finite, there are always an infinite number of possible theories that can be formulated. Therefore, from a purely logical point of view, it appears that the making of a theory is an arbitrary process. Imagine for example the following situation. One is presented with the first two observations of an infinite sequence of numbers: 2, 4 and 6. One theory could be: this is the sequence of even numbers, and the empirical prediction is that the next number is 8. Another theory would be: this is the beginning of a Fibonacci sequence, and so the next number should be 10. But it might also be that the next number is 7 or any other number. So no theory is a logical consequence of observations.

If what is meant by “scientific” is a process that is purely based on empirical evidence, then we must recognize that the making of a theory is a process that is not entirely scientific. This process is constrained by the empirical basis, and possibly by Popper’s falsifiability criterion (that the theory could be falsified by future experiments), but it leaves a considerable amount of possibilities. Whether a theory is “good” or “bad” can be partly judged by its consistence with the empirical evidence at the time when it is made, but mostly the empirical evaluation of a theory is posterior to its formulation. Thus, at the time when a theory is formulated, it may be considered interesting, i.e., worth investigating, rather than plausible. Therefore the choice of formulating one theory rather than another is determined by non-empirical criteria such as: the elegance and simplicity of the theory; its generality (whether it only accounts for current empirical evidence or also makes many new predictions); its similarity with other fruitful theories in other fields; its consonance with convincing philosophical point of views; the fact that it may generalize over preexisting theories; the fact that it suggests new experiments that were not thought of before; the fact that it suggests connections between previously distinct theories.

Thus, theoretical activity reaches far beyond what is usually implicitly considered as scientific, i.e., the relationship with empirical evidence. Yet there is no science without theories.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *