What is computational neuroscience? (XIX) Does the brain process information?

A general phrase that one reads very often about the brain in the context of perception is that it “processes information”. I have already discussed the term “information”, which is ambiguous and misleading. But here I want to discuss the term “process”. Is it true that the brain is in the business of “information processing”?

“Processing” refers to a procedure that takes something and turns it into something else by a sequence of operations, for example trees into paper. So the sentence implies that what the brain is doing is transforming things into other things. For example, it transforms the image of a face into the identity of the face. The coding paradigm, and more generally the information-processing paradigm, relies on this view.

I will take a concrete example. Animals can localize sounds, based on some auditory cues such as the level difference between the two ears. In the information processing view, what sound localization means is a process that takes a pair of acoustic signals and turns it into a value representing the direction of the sound source. However, this not literally what an animal does.

Let us take a cat. The cat lives and, most of the time, does nothing. Through its ears, it receives a continuous acoustic flow. This flow is transduced into electrical currents, which triggers some activity in the brain, that is, electrical events happening. At some moment in time, a mouse scratches the ground for a second, and the cat turns its eyes towards the source, or perhaps crawls to the mouse. During an extended period of time, the mouse is there in the world, and its location exists as a stable property. What the cat “produces”, on the other hand, is a discrete movement with properties that one can relate to the location of the mouse. Thus, sound localization behavior is characterized by discrete events that occur in a continuous sensory flow. Behavior is not adequately described as a transformation of things into things, because behavior is an event, not a thing: it happens.

The same remark applies to neurons. While a neuron is a thing that exists, a spike is an event that happens. It is a transient change in electrical properties that triggers changes in other neurons. As the terms “neural activity” clearly suggest, a spike is not a “thing” but an event, an action on other neurons or muscles. But the notion of information processing implies that neural activity is actually the end result of a process rather than the process itself. There is a confusion between things and events. In a plant that turns trees into paper, trees and papers are the things that are transformed; the action of cutting trees is not one of these things that are transformed. Yet this is what the information processing metaphor says about neural activity.

There are important practical implications for neural models. Traditionally, these models follow the information-processing paradigm. There is an input to the model, for example a pair of acoustical signals, and there is an output, for example an estimate of sound location (I have worked on this kind model myself, see e.g. Goodman & Brette, PLoS Comp Biol 2010). The estimate is generally calculated from the activity of the neurons over the course of the simulation, which corresponds to the time of the sound. For example, one could select the neuron with the maximum firing rate and map its index to location; or one could compute estimate based on population averages, etc. In any case, there is a well-defined input corresponding to a single sound event, and a single output value corresponding to the estimated location.

Now try to embed this kind of model into a more realistic scenario. There is a continuous acoustic flow. Sounds are presented at various locations in sequence, with silent gaps between them. The model must estimate the locations of these sounds. We have a first problem, which is that the model produces estimates based on total activity over time, and this is clearly not going to work here since there is a sequence of sounds. The model could either produce a continuous estimate of source location (the equivalent of continuously pointing to the source), or it could produce an estimate of source location at specific times (the equivalent of making a discrete movement to the source), for example when the sounds stop. In either case, what is the basis for the estimate, since it cannot be the total activity any more? If it is a continuous estimate, how can it be a stable value if neurons have transient activities? More generally, how can the continuous flow of neural activity produce a discrete movement to a target position?

Thus, sound localization behavior is more than a mapping between pairs of signals and direction estimates. Describing perception as “information processing” entails the following steps: a particular time interval of sensory flow is selected and considered as a thing (rather than a flow of events); a particular set of movements is considered and some of its properties are extracted (e.g. direction); what the brain does is described as the transformation of the first thing into the second thing. Thus, it is an abstract construction by an external observer.

Let me summarize this post and the previous one. What is wrong about “information processing”? Two things are wrong. First (previous post), the view that perception is the transformation of information of some kind into information of another kind is self-contradictory, because a signal can only be considered “information” with respect to a perceptual system. This view of perception therefore proposes that there are things to be perceived by something else than the perceptual system. Second (this post), “processing” is the wrong term because actions produced by the brain are not things but events: it is true at the scale of the organism (behavior) and it is true at the scale of neurons (spikes). Both behavior and causes of behavior are constituted by events, not things. It is also true of the mind (phenomenal consciousness). A thing can be transformed into another thing; an event happens.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *