Revues prédatrices : quel est le problème ?

Un récent article du Monde alerte sur un phénomène qui prend de l’ampleur dans l’édition scientifique : les revues prédatrices (voir aussi l’éditorial). Il s’agit d’éditeurs commerciaux qui publient des articles scientifiques en ligne, contre rémunération, sans aucune éthique scientifique, en particulier en acceptant tous les articles sans qu’ils soient revus par des pairs. De manière similaire, les fausses conférences se multiplient ; des entreprises organisent des conférences scientifiques dans un but purement commercial, sans se soucier de la qualité scientifique.

En réaction, certaines institutions commencent à monter des « listes blanches » de journaux à éviter. C’est compréhensible, puisque le phénomène a un coût important. Mais la réponse néglige le problème fondamental. Il faut se rendre à l’évidence : l’éthique commerciale (recherche du profit) n’est pas compatible avec l’éthique scientifique (recherche de la vérité). Les entreprises dont on parle ne sont pas illégales, à ma connaissance. Elles organisent des conférences qui sont réelles ; elles publient des journaux qui sont réels. Simplement, elles ne se soucient pas de la qualité scientifique, mais de leur profit. On considère cela comme immoral ; mais une entreprise commerciale n’a pas de dimension morale, il s’agit simplement d’une organisation dont le but est de générer du profit. On ne peut s’attendre à ce que les intérêts commerciaux correspondent comme par magie exactement aux intérêts scientifiques.

  1. Le problème de l’édition commerciale

Ceci est vrai aux deux extrémités du spectre de la publication académique : pour les journaux prédateurs comme pour les journaux prestigieux. L’article parle de « fausse science » ; mais la plupart des cas de fraude scientifique ont été révélés dans des journaux prestigieux, pas dans des journaux prédateurs – qui de toutes façons ne sont pas lus par la communauté scientifique (voir par exemple Brembs (2018) pour le lien entre qualité méthodologique et prestige du journal). Pour les journaux commerciaux prestigieux, la stratégie commerciale des éditeurs est non pas de maximiser le nombre d’articles publiés, mais de maximiser le prestige perçu de ces journaux, qui servent ensuite d’appâts pour vendre les collections de journaux de l’éditeur. Autrement dit, c’est une stratégie de marque. Cela passe notamment par une sélection drastique des articles soumis, opérée par des éditeurs professionnels, c’est-à-dire pas par des scientifiques professionnels, sur la base de l’importance perçue des résultats, poussant ainsi une génération de scientifiques à gonfler les prétentions de leurs articles. Cela passe par la promotion auprès des institutions publiques de métriques douteuses comme le facteur d’impact, et plus généralement la promotion d’une mythologie de la publication prestigieuse, à savoir l’idée fausse et dangereuse qu’un article doit être jugé par le prestige du journal dans lequel il est publié, plutôt que par sa valeur scientifique intrinsèque – qui elle est évaluée par la communauté scientifique, pas par un éditeur commercial, ni même par deux scientifiques anonymes. En proposant d’éditer des listes de mauvais journaux, on ne résout pas le problème car l’on adhère implicitement à cette logique perverse.

Il suffit de regarder les marges dégagées par les grandes multinationales de l’édition scientifique pour comprendre que le modèle commercial n’est pas adapté. Pour Elsevier par exemple, les marges sont de l’ordre de 40%. La simple lecture de ce chiffre devrait nous convaincre immédiatement que l’édition scientifique devrait être gérée par des institutions publiques, du moins non commerciales (par exemple des sociétés savantes, comme c’est le cas d’un certain nombre de journaux). Quel est la justification pour faire appel à un opérateur commercial pour gérer un service public, ou n’importe quel service ? La motivation est que la compétition permet de diminuer les coûts et d’améliorer la qualité. Or si les marges sont de 40%, c’est que visiblement la compétition n’opère pas. Pourquoi ? Simplement parce que lorsqu’un scientifique soumet un article, il ne choisit pas le journal en fonction du prix ni même du service rendu (qui est en réalité essentiellement rendu par des scientifiques bénévoles), mais en fonction de la visibilité et du prestige du journal. Il n’y a donc pas de compétition sur les prix. Le pire qui pourrait arriver pour un éditeur commercial est que les articles scientifiques soient jugés à leur valeur intrinsèque plutôt que par le journal dans lequel ils sont publiés, parce qu’alors ce modèle commercial unique s’effondrerait et les journaux seraient en compétition sur les prix et les services qu’ils doivent fournir, comme n’importe quelle autre entreprise commerciale. C’est le pire qui puisse arriver aux éditeurs commerciaux, et le mieux qui puisse arriver à la communauté scientifique. Voilà pourquoi les intérêts commerciaux et scientifiques sont divergents.

Quoi qu’il en soit, il faut se rendre à l’évidence : des marges aussi énormes signifient que le modèle commercial est inefficace. Il faut donc cesser immédiatement de faire appel à des journaux commerciaux. Ce n’est pas très difficile : les institutions publiques sont tout à fait capables de gérer des journaux scientifiques ; il en existe et depuis longtemps. Un exemple récent est eLife, un des journaux les plus innovants actuellement en biologie. Cela ne devrait pas être très étonnant : le cœur de l’activité des journaux, à savoir la relecture des articles, est déjà faite par des scientifiques, y compris chez les éditeurs commerciaux qui font appel à leurs services gratuitement. Cela ne veut pas dire que l’on ne peut pas faire appel à des entreprises privées pour fournir des services, par exemple héberger des serveurs, gérer les sites web, fournir de l’infrastructure. Mais les journaux ne doivent plus appartenir à des sociétés commerciales, dont l’intérêt est de gérer ces journaux comme des marques. L’éthique scientifique n’est pas compatible avec l’éthique commerciale.

Comment faire ? En réalité c'est assez évident. Il s’agit pour les pouvoirs publics d’annuler la totalité des abonnements aux éditeurs commerciaux et de cesser de payer des droits de publication à ces éditeurs. De nos jours, il n’est pas difficile d’avoir accès à la littérature scientifique sans passer par les journaux (par les prépublications ou ‘preprints’ ou simplement en écrivant aux auteurs qui sont généralement ravis que l’on s’intéresse à leurs travaux). L’argent économisé peut être réinvesti en partie dans l’édition scientifique non commerciale.

  1. Le mythe de la revue par les pairs

Je veux maintenant en venir à une question d’épistémologie plus subtile mais fondamentale. Quel est au fond le problème des revues prédatrices ? Clairement, il y a le gaspillage d’argent public. Mais l’article du Monde pointe également des problèmes scientifiques, à savoir le fait que de fausses informations sont propagées, sans avoir été vérifiées. L’éditorial parle en effet de ‘la sacro-sainte « revue par les pairs »’, qui n’est pas effectuée par ces revues. Mais est-ce vraiment le problème fondamental ?

L’idée que ce qui fait la valeur d’un article scientifique est qu’il a été validé par la relecture par les pairs avant publication est un mythe tenace mais néanmoins erroné. Cela est faux d’un point de vue empirique, et d’un point de vue théorique.

D’un point de vue empirique, à tout instant, il existe dans la littérature des conclusions contradictoires à propos d’un grand nombre de sujets, publiées dans des revues traditionnelles. Les cas de fraude récents concernent des articles qui ont pourtant subi une relecture par les pairs. Mais c’est le cas aussi d’une quantité beaucoup plus importantes d’articles non frauduleux, mais dont les conclusions ont été contestées par la suite. L’histoire des sciences est remplie de théories scientifiques contradictoires et coexistantes, d’âpres débats entre scientifiques. Ces débats ont lieu, justement, après publication, et le consensus scientifique se forme généralement assez lentement, pratiquement jamais sur la base d’un seul article (voir par exemple Imre Lakatos en philosophie des sciences, ou Thomas Kuhn). Par ailleurs, les résultats scientifiques sont également souvent diffusés dans la communauté scientifique avant publication formelle ; c’est le cas aujourd’hui avec les prépublications (« preprints » en ligne), mais c’était déjà partiellement le cas auparavant avec les conférences. L’article publié reste la référence parce qu’il fournit des détails précis, notamment méthodologiques, mais la contribution des relecteurs sollicités par les journaux n’est dans la plupart des cas pas essentielle, d’autant que celle-ci n’est généralement pas rendue publique.

D’un point de vue théorique, il n’y a aucune raison que la relecture par les pairs « valide » un résultat scientifique. Il n’y a rien de magique dans la revue par les pairs : simplement deux, parfois trois scientifiques donnent leur avis éclairé sur le manuscrit. Ces scientifiques ne sont pas plus experts que ceux qui vont lire l’article lorsqu’il sera publié (je parle bien sûr de la communauté scientifique et pas du grand public). Le fait qu’un article soit publié dans un journal ne dit pas grand chose en soi de la réception des résultats par la communauté ; lorsqu’un article est rejeté d’un journal, il est resoumis ailleurs. La publication finale n’atteste absolument pas d’un consensus scientifique. Par ailleurs, lorsqu’il s’agit d’études empiriques, les relecteurs n’ont pas en réalité la possibilité de vérifier les résultats, et notamment de vérifier s’il n’y a pas eu de fraude. Tout ce qu’ils peuvent faire, c’est vérifier que les méthodes employées semblent appropriées, et que les interprétations semblent sensées (deux points souvent sujets à débat). Pour valider les résultats (mais pas les interprétations), il faudrait au minimum pouvoir refaire les expériences en question, ce qui suppose le temps et l’équipement nécessaire. Ce travail indispensable est fait (ou tenté), mais il n’est pas fait au moment de la publication, ni commissionné par le journal. Il est fait après publication par la communauté scientifique. Le travail de « vérification » (mot inapproprié car il n’y a pas de vérité absolue en science, ce qui la distingue justement de la religion) est le travail de fond de la communauté scientifique, ce n’est pas le travail ponctuel du journal.

C’est cette idée reçue qu’il faut déconstruire : que le travail de revue interne au journal « valide » d’une certaine manière les résultats scientifiques. Ce n’est pas le cas, cela n’a jamais été le cas, et cela ne peut pas être le cas. La validation scientifique est la nature même de l’entreprise scientifique, qui est un travail collectif et de longue haleine. On ne peut pas lire un article et conclure « c’est vrai »; il faut pour cela l’intégrer dans un ensemble de connaissances scientifiques, confronter l’interprétation à des points de vue différents (car toute interprétation requiert un cadre théorique).

C’est justement cette idée reçue que les journaux prestigieux tentent au contraire de consolider. Il faut y résister. L’antidote est de rendre public et transparent le débat scientifique, qui actuellement reste souvent confiné aux couloirs des laboratoires et des conférences. On prétend que la relecture par les pairs valide les résultats scientifiques, mais ces rapports ne sont la plupart du temps pas publiés ; et quid des rapports non publiés lorsque l’article est rejeté par un journal ? Comment savoir alors ce qu’en pense la communauté ? Il faut au contraire rendre public le débat scientifique. C’est par exemple l’ambition de sites comme PubPeer, qui a mis à jour un certain nombre de fraudes, mais qui peut être utilisé simplement pour le débat scientifique de manière générale. Plutôt que de conditionner la publication à un accord confidentiel de scientifiques anonymes, il faut au contraire inverser ce système : publier l’article (c’est en fait déjà le cas par la prépublication), puis solliciter les avis de la communauté, qui seront également publiés, argumentés, discutés par les auteurs et le reste de la communauté. C’est ainsi que les scientifiques, mais également le plus grand public, pourront obtenir un vision plus juste de la valeur scientifique des articles publiés. La revue par les pairs est un principe fondamental de la science, oui, mais pas celle effectuée dans la confidence par les journaux, celle au contraire effectuée au grand jour et sans limite de temps par la communauté scientifique.

What is computational neuroscience? (XXXII) The problem of biological measurement (2)

In the previous post, I have pointed out differences between biological sensing and physical measurement. A direct consequence is that it is not so straightforward to apply the framework of control theory to biological systems. At the level of behavior, it seems clear that animal behavior involves control; it is quite documented in the case of motor control. But this is the perspective of an external observer: the target value, the actual value and the error criterion are identified with physical measurements by an external observer. But how does the organism achieve this control, from its own perspective?

What the organism does not do, at least not directly, is measure the physical dimension and compare it to a target value. Rather, the biological system is influenced by the physical signal and reacts in a way that makes the physical dimension closer to a target value. How? I do not have a definite answer to this question, but I will explore a few possibilities.

Let us first explore a conventional possibility. The sensory neuron encodes the sensory input (eg muscle stretch) in some way; the control system decodes it, and then compares it to a target value. So for example, let us say that the sensory neuron is an integrate-and-fire neuron. If the input is constant, then the interspike interval can be mapped back to the input value. If the input is not constant, it is more complicated but estimates are possible. There are various studies relevant to this problem (for example Lazar (2004); see also the work of Sophie Denève, e.g. 2013). But all these solutions require knowing quite precisely how the input has been encoded. Suppose for example that the sensory neuron adapts with some time constant. Then the decoder needs somehow to de-adapt. But to do it correctly, one needs to know the time constant accurately enough, otherwise biases are introduced. If we consider that the encoder itself learns, e.g. by adapting to signal statistics (as in the efficient coding hypothesis), then the properties of the encoder must be considered unknown by the decoder.

Can the decoder learn to decode the sensory spikes? The problem is it does not have access to the original signal. The key question then is: what could the error criterion be? If the system has no access to the original signal but only streams of spikes, then how could it evaluate an error? One idea is to make an assumption about some properties of the original signal. One could for example assume that the original signal varies slowly, in contrast with the spike train, which is a highly fluctuating signal. Thus we may look for a slow reconstruction of the signal from the spike train; this is in essence the idea of slow feature analysis. But the original signal might not be slowly fluctuating, as it is influenced by the actions of the controller, so it is not clear that this criterion will work.

Thus it is not so easy to think of a control system which would decode the sensory neuron activity into the original signal so as to compare it to a target value. But beyond this technical issue (how to learn the decoder), there is a more fundamental question: why splitting the work into two units (encoder/decoder), if the function of the second one is essentially to undo the work of the first one?

An alternative is to examine the system as a whole. We consider the physical system (environment), the sensory neuron, the actuator, and the interneurons (corresponding to the control system). Instead of seeing the sensory neuron as involved in an act of measurement and communication and the interneurons as involved in an act of interpretation and command, we see the entire system as a distributed dynamical system with a number of structural parameters. In terms of dynamical systems (rather than control), the question becomes: is the target value for the physical dimension an attractive fixed point of this system, or more generally, is there such a fixed point? (as opposed to fluctuations) We can then derive complementary questions:

  • robustness: is the fixed point robust to perturbations, for example changes in properties of the sensor, actuator or environment?
  • optimality: are there ways to adjust the structure of the system so that the firing rate is minimized (for example)?
  • control: can we change the fixed point by an intervention on this system? (e.g. on the interneurons)

Thus, the problem becomes one of designing a spiking system that has an attractive fixed point in the physical dimension, with some desirable properties. Framing the problem in this way does not necessarily require that the physical dimension is explicitly extracted (“decoded”) from the activity of the sensory neuron. If we look at such a system, we might not be able to identify in any of the neurons a quantity that corresponds to the physical signal, or to the target value. Rather, physical signal and target value are to be found in the physical environment, and it is a property of the coupled dynamical system (neurons-environment) that the physical signal tends to approach the target value.

What is computational neuroscience? (XXXI) The problem of biological measurement (1)

We tend to think of sensory receptors (photoreceptors, inner hair cells) or sensory neurons (retinal ganglion cells; auditory nerve fibers) as measuring physical dimensions, for example light intensity or acoustical pressure, or some function of it. The analogy is with physical instruments of measure, like a thermometer or a microphone. This confers a representational quality to the activity of neurons, an assumption that is at the core of the neural coding metaphor. I explain at length why that metaphor is misleading in many ways in an essay (Brette (2018) Is coding a relevant metaphor for the brain?). Here I want to examine more specifically the notion of biological measurement and the challenges it poses.

This notion comes about not only in classical representationalist views, where neural activity is seen as symbols that the brain then manipulates (the perception-cognition-action model, also called sandwich model), but also in alternative views, although it is less obvious. For example, one alternative is to see the brain not as a computer system (encoding symbols, then manipulating them) but as a control system (see Paul Cisek’s behavior as interaction, William Powers’ perceptual control theory, Tim van Gelder’s dynamical view of cognition). In this view, the activity of neurons does not encode stimuli. In fact there is no stimulus per se, as Dewey pointed out: “the motor response determines the stimulus, just as truly as sensory stimulus determines the movement.”.

A simple case is feedback control: the system tries to maintain some input at a target value. To do this, the system must compare the input with an internal value. We could imagine for example something like an idealized version of the stretch reflex: when the muscle is stretched, a sensory feedback triggers a contraction, and we want to maintain muscle length constant. But this apparently trivial task raises a number of deep questions, as more generally the application of control theory to biological systems. I suppose there is a sensor, a neuron that transduces some physical dimension into spike trains, for example the stretch of a muscle. There is also an actuator, which reacts to a spike by a physical action, for example contracting the muscle with a particular time course. I chose a spike-based description not just because it corresponds to the physiology of the stretch reflex, but also because it will illustrate some fundamental issues (which would exist also with graded transduction, but less obviously so).

Now we have a neuron, or a set of neurons, which receive these sensory inputs and send spikes to the actuator. For this discussion, it is not critical that these are actually neurons; we can just consider that there is a system there, and we ask how this system should be designed so as to successfully achieve a control task.

The major issue here is that the control system does not directly deal with the physical dimension. At first sight, we could think this is a minor issue. The physical dimension gets transduced, and we could simply define the target value in the transduced dimension (eg the current). But here we see that the problem is more serious. What the control system deals with is not simply a function of the physical dimension. More accurately, transduction is a nonlinear dynamical system influenced by a physical signal. The physical signal can be constant, for example, while the transduced current decays (adaptation) and the sensory neuron outputs spike trains, i.e., a highly variable signal. This poses a much more serious problem than a simple calibration problem. When the controlled physical value is at the target value, the sensory neuron might be spiking, perhaps not even at a regular rate. The control system should react to that particular kind of signal by not acting, while it should act when the signal deviates from it. But how can the control system identify the target state, or even know whether to act in one or the opposite direction?

Adaptation in neurons is often depicted as an optimization of information transmitted, in line with the metaphor of the day (coding). But the relevant question is: how does the receiver of this “information” knows how the neuron has adapted? Does it have to de-adapt, to somehow be matched to the adaptive process of the encoding neuron? (This problem has to do with the dualistic structure of the neural coding metaphor).

There are additional layers of difficulty. We have first recognized that transduction is not a simple mapping from a physical dimension to a biological (e.g. electrochemical) dimension, but rather a dynamical system influenced by a physical signal. Now this dynamical system depends on the structure of the sensory neuron. It depends for example on the number of ionic channels and their properties, and we know these are highly plastic and indeed quite variable both across time and across cells. This dynamical system also depends on elements of the body, or let’s say more generally the neuron’s environment. For example, the way acoustical pressure is transduced in current by an inner hair cell depends obviously on the acoustical pressure at the eardrum, but that physical signal depends on the shape the ear, which filters sounds. Properties of neurons change with time too, development and aging. Thus, we cannot assume that the dynamical transformation from physical signal to biological signal is a fixed one. Somehow, the control system has to work despite this huge plasticity and the dynamical nature of the sensors.

Let us pause for a moment and outline a number of differences between physical measurements, as with a thermometer, and biological measurements (or “sensing”):

  • The physical meter is calibrated with respect to an external reference, for example 0°C is when water freezes, while 100°C is when it boils. The biological sensor cannot be calibrated with respect to an external reference.
  • The physical meter produces a fixed value for a stationary signal. The biological sensor produces a dynamical signal in response to a stationary signal. More accurately, the biological sensor is a nonlinear dynamical system influenced by the physical signal.
  • The physical meter is meant to be stable, in that the mapping from physical quantity to measurement is fixed. When it is not, this is considered an error. The biological sensor does not have fixed properties. Changes in properties occur in the normal course of life, from birth to death, and some changes in properties are interpreted as adaptations, not errors.

From these differences, we realize that biological sensors do not provide physical measurements in the usual sense. The next question, then, is how can a biological system control a physical dimension with biological sensors that do not act as measurements of that dimension?