What is computational neuroscience (XXV) - Are there biological models in computational neuroscience?

Computational neuroscience is the science of how the brain “computes”, that is, how the brain performs cognitive functions such as recognizing a face or walking. Here I will argue that most models of cognition developed in the field, especially as regards sensory systems, are actually not biological models but hybrid models consisting of a neural model together with an abstract model.

First of all, many neural models are not meant to be models of cognition. For example, there are models that are developed to explain the irregular spiking of cortical neurons, or oscillations. I will not consider them. According to the definition above, I categorize them in theoretical neuroscience rather than computational neuroscience. Here I consider for example models of perception, memory, motor control.

An example that I know well is the problem of localizing a sound source from timing cues. There are a number of models, including a spiking neuron model that we have developed (Goodman and Brette, 2010). This model takes as input two sound waves, corresponding to the two monaural sounds produced by the sound source, and outputs the estimated direction of the source. But the neural model, of course, does not output a direction. Rather, the output of the neural model is the activity of a layer of neurons. In the model, we consider that direction is encoded by the identity of the maximally active neuron. In another popular model in the field, direction is encoded by the relative total activity of two groups of neurons (see our comparison of models in Goodman et al. 2013). In all models, there is a final step which maps the activity of neurons to estimated sound location, and this step is not a neural model but an abstract model. This causes big epistemological problems when it comes to assessing and comparing the empirical value of models because a crucial part of the models is not physiological. Some argue that neurons are tuned to sound location; others that population activity varies systematically with sound location. Both are right, and thus none of these observations is a decisive argument to discriminate between the models.

The same is seen in other sensory modalities. The output is the identity of a face; or of an odor; etc. The symmetrical situation occurs in motor control models: this time the abstract model is on the side of the input (mapping from spatial position to neural activity or neural input). Memory models face this situation twice, with abstract models both on the input (the thing to be memorized) and the output (the recall).

Fundamentally, this situation has to do with the fact that most models in computational neuroscience take a representational approach: they describe how neural networks represent in their firing some aspect of the external world. The representational approach requires defining a mapping (called the “decoder”) from neural activity to objective properties of objects, and this mapping cannot be part of the neural model. Indeed, sound location is a property of objects and thus does not belong to the domain of neural activity. So no sound localization model can ever be purely neuronal.

Thus to develop biological models, it is necessary to discard the representational approach. Instead of “encoding” things, neurons control the body; neurons are agents (rather than painters in the representational approach). For example, a model of sound localization should be a model of an orientational response, including the motor command. The model explains not how space is “represented”, but how an animal orients its head (for example) to a sound source. When we try to model an actual behavior, we find that the nature of the problem changes quite significantly. For example, because a particular behavior is an event, neural firing must also be seen as events. In this context, counting spikes and looking at the mutual information between the count and some stimulus property is not very meaningful. What matters is the events that the spikes trigger in the targets (muscles or other neurons). The goal is not to represent the sensory signals but to produce an appropriate behavior. One also realizes that the relation between sensory signals and actions is circular, and therefore cannot be adequately described as “processing”: sensory signals make you turn the head, but if you turn the head, the sensory signals change.

Currently, most models of cognition in computational neuroscience are not biological models. They include neuron models together with abstract models, a necessity stemming from the representational approach. To a make biological model requires including a model of the sensorimotor loop. I believe this is the path that the community should take.

New chapter : Excitability of an isopotential membrane

I have just uploaded a new chapter of my book on the theory of action potentials: Excitability of an isopotential membrane. In this chapter, I look mostly at the concept of spike threshold: the different ways to define it, its quantitative relation to different biophysical parameters (eg properties of sodium channels), and the conditions for its existence (eg a sufficient number of channels). This is closely related to my previous work on the threshold equation (Platkiewicz and Brette, 2010). It also contains some unpublished work (in particular updates of the threshold equation).

I am planning to extend this chapter with:

  • A few Brian notebooks.
  • A section on excitability types (Hodgkin classification).
  • Some experimental confirmations of the threshold equation that are under way (you will see in section 4.4.2 that current published experimental data do not allow precise testing of the theory).

I am now planning to work on the chapter on action potential propagation.

All comments are welcome.

Free the journals

These days, academic journals serve two purposes: to organize peer review, and to make an editorial selection. With internet and in particular “preprint” servers (eg biorxiv), journals are no longer necessary for distributing academic papers. It is also worth reminding that the peer review system has not always been organized in the way it is currently organized, ie with several external reviewers, multiple revision rounds, etc. For example, Nature only introduced formal peer review in 1967. Before that, the selection would be done internally by the editor.

These two missions, organizing peer review and making an editorial selection, are currently coupled. But this is neither necessary, nor a good thing. It is obvious that this coupling is not necessary. One could easily imagine a system where papers are submitted to a mega-journal (e.g. PLoS ONE, PeerJ, F1000 Research), which organizes the peer review, and then journals (e.g. Nature or Cell) make their editorial selection based on perceived “impact”, possibly using the reviews. Instead, authors must submit to each journal separately until their paper is accepted, and reviewers are asked both to check the scientific standards, which is the alleged purpose of peer review, and to judge the perceived importance of papers, which is an editorial task. This results in frustration for the authors, unnecessary delays and tremendous waste of resources. Thus, it is not a good thing.

Once a peer review system is organized (eg by mega-journals), the remaining role of journals is then editorial selection, and this could be done separately. Once we realize that, it becomes clear that very little infrastructure should be needed to run a journal. A journal issue is then just a list of papers selected by an editor, put online with the appropriate links and editorial comments. I propose that every scientist, or lab, or possibly group of interest, starts their own journal, which I will call “free journal” (see my related posts here and there). Free journals are not tied to any commercial interest; they are self-managed academic journals. Crucially, the editor makes a personal selection based on her readings, papers that she personally thinks are interesting. This means in particular that, in contrast with most journals, the editor is highly qualified. The selection is meaningful, not a collection of thumbs up/down made by disparate reviewers based on vague criteria (“impact”). It also implies that it is totally acceptable for the editorial selection to include “preprints”: the editor is a peer and therefore any featured paper is by definition peer reviewed (ie, as in Nature before 1967). I have made my own free journal of theoretical neuroscience in this spirit. I have collected some technical advice on how to make one, and I would be happy to receive any suggestion.

The bottomline is: it is very easy to make a free journal. On the technical side, one essentially needs to use a blogging system, eg WordPress. This automatically generates an RSS feed (eg one post per issue). I also put all the comments associated to the selected papers on PubPeer, with a link to the journal; this way, anyone using their plugin automatically sees that the papers have been selected in the journal when looking at them on pubmed, for example. On the editorial side, it actually represents little work, and I believe that this little amount is actually quite interesting work to do. Every scientist reads and annotates papers. All that is required to run a free journal then, is to set half a day in the month to put your notes together into a post. This helps organizing your bibliographical notes, and it is helpful for your colleagues and your students. One could also imagine coupling this writing with the lab’s journal club.

Please leave me a note if you are making your own free journal and I would be happy to link it from my journal.

My free journal: Brette’s free journal of theoretical neuroscience