Academic precarity and the single PI lab model

Brilliant young scientists are struggling to obtain a stable faculty position, all over the world. It seems that “publish or perish” was actually quite hopeful. Now clearly, at least in biology, it is more like “publish in Science, Nature or Cell every other year or perish”. Only a small proportion of PhD holders manage to obtain a stable academic position, and only at an advanced age after multiple postdocs. Of course, this competition for publishing in certain venues also has a great impact on science; encouraging dishonesty and discouraging both long-term creative work and solid incremental science. Everyone complains about the situation.

What should we do about it? What I hear most frequently is that governments should increase the budget and create more faculty positions. That is certainly necessary but I think it is a reductionist view that largely misses the point. Of course, at the time when you start hiring more faculty, the proportion of young scientists who get a faculty position increases. However, if each of them then opens their lab and hire dozens of postdocs, then this proportion quickly reverts to what it was before.

What is at stakes is the general organization of research, in particular the “X lab” model (e.g. the Brette lab), with one group leader (the “PI”) surrounded by a number of graduate students and postdocs (I will discuss only the research staff here), with a complete turnover every few years. It seems that in many countries, to get a faculty position means to start their “own” lab. This is not the case yet in France, but this lab model is spreading very, very fast. With the new law on research currently in discussion (“discussion” might not be the appropriate word, though), it is planned that about 25% of all new recruitments will follow this model (a tenure-track system).

The math is easy. In a stable world, each faculty member will train on average one student to become a faculty member. For example, if a typical lab consists of 1 PI with 3 graduate students, rotating every 4 years, then over 40 years the PI will have trained 30 students, one of which would become a PI. The “success rate” would therefore be 1/30. Even with just one student at any given time, the chance for a student to end up getting a faculty position is 1/10.

Of course, one does not necessarily pursue a PhD with the goal of obtaining a faculty position. It is completely respectable to do a PhD then go to the industry. In many countries, holding a PhD is an asset. It is generally not the case in France, though. One may also want to do a PhD not for career, but because it is interesting in itself. This seems perfectly valid. Note that in that case, implementing a subtask of the PI’s project and doing all the tedious bench work might not be ideal. In any case, it must be emphasized that in this lab model, training students for research is only a marginal aim of a PhD.

How about postdocs? A postdoc is not a diploma. It typically doesn’t improve employability much. Of course, it could be done just for its own interest. But the experience I hear is mostly that of a highly stressful situation, because many if not most postdocs are hoping to secure a stable faculty position. Let us do the math again, with a simplified example. Suppose each lab has just 1 postdoc, rotating every 4 years. Compared to the above situation, it means that 1 out of 3 graduate students go on to do a postdoc. Then each of these postdocs has a 10% chance of getting a faculty position.

Let us have a look at funding questions now. What seems very appreciated is that when you start a lab, you get a “start-up package”. There is a blog post on Naturejobs entitled “The faculty series: Top 10 tips on negotiating start-up packages” that describes it. We can read for example: “There’s no point having equipment if you don’t have any hands to use it. One of the largest costs you can expect to come out of your start-up fund are the salaries of PhD students and postdocs. They’re the most crucial components of the lab for almost all researchers.”. It is very nice to provide the PI with these “components of the lab”, but as argued above, a direct consequence is to organize academic precarity on a massive scale. This remains true even if the entire budget of the State is allocated to research.

The same goes for the rest of the funding system. Project-based funding is conceived so that you hire people to implement your project, which you supervise. Part of these people are students and postdocs. For example, an ERC Starting Grant is 1.5 million euros for 5 years, or 300 k€ per year. In France, a PhD student costs about 30 k€ / year and a postdoc about the double. Of course, to that must be added the indirect costs (25%) and the grant also covers equipment and your own salary. But this is generally sufficient to hire a few students and postdocs, especially as in many countries graduate students are funded by other sources. Then the budget goes up to 2 million € for the consolidator grant and 2.5 million € for the advanced grant. The ERC has become a sort of model for good funding schemes in Europe, because it is so generous. But is it? Certainly it is for the PI who receives the grant, but a world where this mode of funding is generalized is a world where research is done by a vanishingly small proportion of permanent researchers. It is a world that is extremely cruel to young scientists, and with a very worrying demographic structure, most of the work being done by an army of young people with high turnover. You might increase the ERC budget several fold because it is such a great scheme, it will not improve this situation, at all.

Ending academic precarity is a noble cause, but one has to realize that it is inconsistent with the one PI - one lab model, as well as with project-based funding. I want to add a couple of remarks. Precarity is obviously bad for the people who experience it, but it is also bad more generally for the academic system. The excessive competition it generates encourages bad practices, and discourages long-term creative work and solid incremental science. We must also look beyond research per se. The role of academia in society is not just to produce new science. It is also to teach and to provide public expertise. We need to have some people with a deep understanding of epidemiology that we can turn to for advice when necessary. You would not just hire a bunch of graduate students after a competitive call for projects to do this advising job when a new virus emerges. But with a pyramidal organization, a comparatively low proportion of the budget is spent on sustaining the most experienced persons, so for the same budget, you would have much lower expertise than in an organization with more normal demographics. This is incredibly wasteful.

What is the alternative? Well, first of all, research has not always been organized in this way, with one PI surrounded by an army of students and postdocs. The landmark series of 4 papers by Hodgkin and Huxley in 1952 on the ionic basis of neural excitability did not come out of the "Hodgkin lab"; they came out from “the Physiological Laboratory, University of Cambridge”. The Hubel and Wiesel papers on the visual cortex were not done by graduate student Hubel under the supervision of professor Wiesel. Two scientists of the same generation decided to collaborate together, and as far as I know none of their landmark papers from the 1960s involved any student or postdoc. What strikes me is that these two experienced scientists apparently had the time to do the experiments themselves (all the experiments), well after they got a stable faculty position (in 1959). How many PIs can actually do that today, instead of supervising, hiring, writing grants and filling reports? It is quite revealing to read again the recent blog post cited above: “There’s no point having equipment if you don’t have any hands to use it.” - as if using it yourself was not even conceivable.

In France, the 1 PI - 1 lab kind of organization has been taking on gradually over the last 20 years, with a decisive step presumably coming this year with the introduction of a large proportion of tenure tracks with “start-up packages”. This move has been accompanied by a progressive shift from base funding to project-based funding, and a steady increase in the age of faculty recruitment. This is not to say that the situation was great 20 years ago, but it is clearly worsening.

A sustainable, non-pyramidal model is one in which a researcher would typically train no more than a few students over her entire career. It means that research work is done by collaboration between peers, rather than by hiring (and training) less experienced people to do the work. It means that research is not generically funded on projects led by a single individual acting as a manager. In fact, a model where most of the working force is already employed should have much less use of “projects”. A few people can just decide to join forces and work together, just as Hubel and Wiesel did. Of course, some research ideas might need expenses beyond the usual (e.g. equipment), and so there is a case for project-based funding schemes to cover for these expenses. But it is not the generic case.

One of the fantasies of competitive project-based funding is that it would supposedly increase research quality by selecting the best projects. But how does it work? Basically, peers read the project and decide whether they think it is good. Free association is exactly that, except the peers in question 1) are real experts, 2) commit to actually do some work on the project and possibly to bring some of their own resources. Without the bureaucracy. Peer reviewing of projects is an unnecessary and poor substitute for what goes on in free collaboration - do I think this idea is exciting enough to devote some of my own time (and possibly budget) on it?

In conclusion, the problem of academic precarity, of the unhealthy pressure put on postdocs in modern academia, is not primarily a budget problem. At least it is not just that. It is a direct consequence of an insane organization of research, based on general managerial principles that are totally orthogonal to what research is about (and beyond: teaching, public expertise). This is what needs to be challenged.

Update: